Microstructural origin of locally enhanced CO2 electroreduction activity on gold

Understanding how the bulk structure of a material affects catalysis on its surface is critical to the development of actionable catalyst design principles. Bulk defects have been shown to affect electrocatalytic materials that are important for energy conversion systems, but the structural origins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2021-07, Vol.20 (7), p.1000-1006
Hauptverfasser: Mariano, Ruperto G., Kang, Minkyung, Wahab, Oluwasegun J., McPherson, Ian J., Rabinowitz, Joshua A., Unwin, Patrick R., Kanan, Matthew W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1006
container_issue 7
container_start_page 1000
container_title Nature materials
container_volume 20
creator Mariano, Ruperto G.
Kang, Minkyung
Wahab, Oluwasegun J.
McPherson, Ian J.
Rabinowitz, Joshua A.
Unwin, Patrick R.
Kanan, Matthew W.
description Understanding how the bulk structure of a material affects catalysis on its surface is critical to the development of actionable catalyst design principles. Bulk defects have been shown to affect electrocatalytic materials that are important for energy conversion systems, but the structural origins of these effects have not been fully elucidated. Here we use a combination of high-resolution scanning electrochemical cell microscopy and electron backscatter diffraction to visualize the potential-dependent electrocatalytic carbon dioxide ( C O 2 ) electroreduction and hydrogen ( H 2 ) evolution activity on Au electrodes and probe the effects of bulk defects. Comparing colocated activity maps and videos to the underlying microstructure and lattice deformation supports a model in which CO 2 electroreduction is selectively enhanced by surface-terminating dislocations, which can accumulate at grain boundaries and slip bands. Our results suggest that the deliberate introduction of dislocations into materials is a promising strategy for improving catalytic properties. Although bulk defects can influence the performance of electrocatalysts used for energy conversion, their structural origins are still unclear. The effects of bulk defects on CO 2 electroreduction and H 2 evolution activity on Au electrodes are now elucidated.
doi_str_mv 10.1038/s41563-021-00958-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2503630385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503630385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-1c3c7618efb76ddf83662f8af59bbf99ee273bae2b9e7d35f0f24f9c970af8743</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAi5fVfGyym6MUv6BSD3oO2eykbkk3NdkV-u9NbUHw4Gnm8LzvDA9Cl5TcUMLr21RSIXlBGC0IUaIu1BGa0LKSRSklOT7slDJ2is5SWpFMCiEn6PWlszGkIY52GKPxOMRu2fU4OOyDNd5vMfQfprfQ4tmCYfBghxgitDnQhR6bPL66YYvzvgy-PUcnzvgEF4c5Re8P92-zp2K-eHye3c0LW9J6KKjltpK0BtdUsm1dzaVkrjZOqKZxSgGwijcGWKOgarlwxLHSKasqYlxdlXyKrve9mxg-R0iDXnfJgvemhzAmzQThkmc3IqNXf9BVGGOfv8tUKbmq861MsT2185EiOL2J3drEraZE7yTrvWSd1ekfyVrlEN-HUob7JcTf6n9S3zqtgBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546398273</pqid></control><display><type>article</type><title>Microstructural origin of locally enhanced CO2 electroreduction activity on gold</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Mariano, Ruperto G. ; Kang, Minkyung ; Wahab, Oluwasegun J. ; McPherson, Ian J. ; Rabinowitz, Joshua A. ; Unwin, Patrick R. ; Kanan, Matthew W.</creator><creatorcontrib>Mariano, Ruperto G. ; Kang, Minkyung ; Wahab, Oluwasegun J. ; McPherson, Ian J. ; Rabinowitz, Joshua A. ; Unwin, Patrick R. ; Kanan, Matthew W.</creatorcontrib><description>Understanding how the bulk structure of a material affects catalysis on its surface is critical to the development of actionable catalyst design principles. Bulk defects have been shown to affect electrocatalytic materials that are important for energy conversion systems, but the structural origins of these effects have not been fully elucidated. Here we use a combination of high-resolution scanning electrochemical cell microscopy and electron backscatter diffraction to visualize the potential-dependent electrocatalytic carbon dioxide ( C O 2 ) electroreduction and hydrogen ( H 2 ) evolution activity on Au electrodes and probe the effects of bulk defects. Comparing colocated activity maps and videos to the underlying microstructure and lattice deformation supports a model in which CO 2 electroreduction is selectively enhanced by surface-terminating dislocations, which can accumulate at grain boundaries and slip bands. Our results suggest that the deliberate introduction of dislocations into materials is a promising strategy for improving catalytic properties. Although bulk defects can influence the performance of electrocatalysts used for energy conversion, their structural origins are still unclear. The effects of bulk defects on CO 2 electroreduction and H 2 evolution activity on Au electrodes are now elucidated.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-021-00958-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/886 ; 639/638/161/886 ; Biomaterials ; Carbon dioxide ; Catalysis ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystal defects ; Design defects ; Edge dislocations ; Electrocatalysts ; Electrochemical cells ; Electrochemistry ; Electrodes ; Electron backscatter diffraction ; Electrowinning ; Energy conversion ; Grain boundaries ; Hydrogen evolution ; Materials Science ; Microstructure ; Nanotechnology ; Optical and Electronic Materials ; Origins</subject><ispartof>Nature materials, 2021-07, Vol.20 (7), p.1000-1006</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-1c3c7618efb76ddf83662f8af59bbf99ee273bae2b9e7d35f0f24f9c970af8743</citedby><cites>FETCH-LOGICAL-c418t-1c3c7618efb76ddf83662f8af59bbf99ee273bae2b9e7d35f0f24f9c970af8743</cites><orcidid>0000-0001-9330-0464 ; 0000-0003-3106-2178 ; 0000-0001-6085-3011 ; 0000-0002-5932-6289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-021-00958-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-021-00958-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Mariano, Ruperto G.</creatorcontrib><creatorcontrib>Kang, Minkyung</creatorcontrib><creatorcontrib>Wahab, Oluwasegun J.</creatorcontrib><creatorcontrib>McPherson, Ian J.</creatorcontrib><creatorcontrib>Rabinowitz, Joshua A.</creatorcontrib><creatorcontrib>Unwin, Patrick R.</creatorcontrib><creatorcontrib>Kanan, Matthew W.</creatorcontrib><title>Microstructural origin of locally enhanced CO2 electroreduction activity on gold</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><description>Understanding how the bulk structure of a material affects catalysis on its surface is critical to the development of actionable catalyst design principles. Bulk defects have been shown to affect electrocatalytic materials that are important for energy conversion systems, but the structural origins of these effects have not been fully elucidated. Here we use a combination of high-resolution scanning electrochemical cell microscopy and electron backscatter diffraction to visualize the potential-dependent electrocatalytic carbon dioxide ( C O 2 ) electroreduction and hydrogen ( H 2 ) evolution activity on Au electrodes and probe the effects of bulk defects. Comparing colocated activity maps and videos to the underlying microstructure and lattice deformation supports a model in which CO 2 electroreduction is selectively enhanced by surface-terminating dislocations, which can accumulate at grain boundaries and slip bands. Our results suggest that the deliberate introduction of dislocations into materials is a promising strategy for improving catalytic properties. Although bulk defects can influence the performance of electrocatalysts used for energy conversion, their structural origins are still unclear. The effects of bulk defects on CO 2 electroreduction and H 2 evolution activity on Au electrodes are now elucidated.</description><subject>639/301/299/886</subject><subject>639/638/161/886</subject><subject>Biomaterials</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystal defects</subject><subject>Design defects</subject><subject>Edge dislocations</subject><subject>Electrocatalysts</subject><subject>Electrochemical cells</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron backscatter diffraction</subject><subject>Electrowinning</subject><subject>Energy conversion</subject><subject>Grain boundaries</subject><subject>Hydrogen evolution</subject><subject>Materials Science</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Origins</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAi5fVfGyym6MUv6BSD3oO2eykbkk3NdkV-u9NbUHw4Gnm8LzvDA9Cl5TcUMLr21RSIXlBGC0IUaIu1BGa0LKSRSklOT7slDJ2is5SWpFMCiEn6PWlszGkIY52GKPxOMRu2fU4OOyDNd5vMfQfprfQ4tmCYfBghxgitDnQhR6bPL66YYvzvgy-PUcnzvgEF4c5Re8P92-zp2K-eHye3c0LW9J6KKjltpK0BtdUsm1dzaVkrjZOqKZxSgGwijcGWKOgarlwxLHSKasqYlxdlXyKrve9mxg-R0iDXnfJgvemhzAmzQThkmc3IqNXf9BVGGOfv8tUKbmq861MsT2185EiOL2J3drEraZE7yTrvWSd1ekfyVrlEN-HUob7JcTf6n9S3zqtgBs</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Mariano, Ruperto G.</creator><creator>Kang, Minkyung</creator><creator>Wahab, Oluwasegun J.</creator><creator>McPherson, Ian J.</creator><creator>Rabinowitz, Joshua A.</creator><creator>Unwin, Patrick R.</creator><creator>Kanan, Matthew W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9330-0464</orcidid><orcidid>https://orcid.org/0000-0003-3106-2178</orcidid><orcidid>https://orcid.org/0000-0001-6085-3011</orcidid><orcidid>https://orcid.org/0000-0002-5932-6289</orcidid></search><sort><creationdate>20210701</creationdate><title>Microstructural origin of locally enhanced CO2 electroreduction activity on gold</title><author>Mariano, Ruperto G. ; Kang, Minkyung ; Wahab, Oluwasegun J. ; McPherson, Ian J. ; Rabinowitz, Joshua A. ; Unwin, Patrick R. ; Kanan, Matthew W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-1c3c7618efb76ddf83662f8af59bbf99ee273bae2b9e7d35f0f24f9c970af8743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/299/886</topic><topic>639/638/161/886</topic><topic>Biomaterials</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystal defects</topic><topic>Design defects</topic><topic>Edge dislocations</topic><topic>Electrocatalysts</topic><topic>Electrochemical cells</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron backscatter diffraction</topic><topic>Electrowinning</topic><topic>Energy conversion</topic><topic>Grain boundaries</topic><topic>Hydrogen evolution</topic><topic>Materials Science</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Origins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mariano, Ruperto G.</creatorcontrib><creatorcontrib>Kang, Minkyung</creatorcontrib><creatorcontrib>Wahab, Oluwasegun J.</creatorcontrib><creatorcontrib>McPherson, Ian J.</creatorcontrib><creatorcontrib>Rabinowitz, Joshua A.</creatorcontrib><creatorcontrib>Unwin, Patrick R.</creatorcontrib><creatorcontrib>Kanan, Matthew W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mariano, Ruperto G.</au><au>Kang, Minkyung</au><au>Wahab, Oluwasegun J.</au><au>McPherson, Ian J.</au><au>Rabinowitz, Joshua A.</au><au>Unwin, Patrick R.</au><au>Kanan, Matthew W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural origin of locally enhanced CO2 electroreduction activity on gold</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>20</volume><issue>7</issue><spage>1000</spage><epage>1006</epage><pages>1000-1006</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Understanding how the bulk structure of a material affects catalysis on its surface is critical to the development of actionable catalyst design principles. Bulk defects have been shown to affect electrocatalytic materials that are important for energy conversion systems, but the structural origins of these effects have not been fully elucidated. Here we use a combination of high-resolution scanning electrochemical cell microscopy and electron backscatter diffraction to visualize the potential-dependent electrocatalytic carbon dioxide ( C O 2 ) electroreduction and hydrogen ( H 2 ) evolution activity on Au electrodes and probe the effects of bulk defects. Comparing colocated activity maps and videos to the underlying microstructure and lattice deformation supports a model in which CO 2 electroreduction is selectively enhanced by surface-terminating dislocations, which can accumulate at grain boundaries and slip bands. Our results suggest that the deliberate introduction of dislocations into materials is a promising strategy for improving catalytic properties. Although bulk defects can influence the performance of electrocatalysts used for energy conversion, their structural origins are still unclear. The effects of bulk defects on CO 2 electroreduction and H 2 evolution activity on Au electrodes are now elucidated.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41563-021-00958-9</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9330-0464</orcidid><orcidid>https://orcid.org/0000-0003-3106-2178</orcidid><orcidid>https://orcid.org/0000-0001-6085-3011</orcidid><orcidid>https://orcid.org/0000-0002-5932-6289</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2021-07, Vol.20 (7), p.1000-1006
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_2503630385
source SpringerLink Journals; Nature Journals Online
subjects 639/301/299/886
639/638/161/886
Biomaterials
Carbon dioxide
Catalysis
Chemistry and Materials Science
Condensed Matter Physics
Crystal defects
Design defects
Edge dislocations
Electrocatalysts
Electrochemical cells
Electrochemistry
Electrodes
Electron backscatter diffraction
Electrowinning
Energy conversion
Grain boundaries
Hydrogen evolution
Materials Science
Microstructure
Nanotechnology
Optical and Electronic Materials
Origins
title Microstructural origin of locally enhanced CO2 electroreduction activity on gold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20origin%20of%20locally%20enhanced%20CO2%20electroreduction%20activity%20on%20gold&rft.jtitle=Nature%20materials&rft.au=Mariano,%20Ruperto%20G.&rft.date=2021-07-01&rft.volume=20&rft.issue=7&rft.spage=1000&rft.epage=1006&rft.pages=1000-1006&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-021-00958-9&rft_dat=%3Cproquest_cross%3E2503630385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546398273&rft_id=info:pmid/&rfr_iscdi=true