Estimating Structural Equation Models Using James–Stein Type Shrinkage Estimators
We propose a two-step procedure to estimate structural equation models (SEMs). In a first step, the latent variable is replaced by its conditional expectation given the observed data. This conditional expectation is estimated using a James–Stein type shrinkage estimator. The second step consists of...
Gespeichert in:
Veröffentlicht in: | Psychometrika 2021-03, Vol.86 (1), p.96-130 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130 |
---|---|
container_issue | 1 |
container_start_page | 96 |
container_title | Psychometrika |
container_volume | 86 |
creator | Burghgraeve, Elissa De Neve, Jan Rosseel, Yves |
description | We propose a two-step procedure to estimate structural equation models (SEMs). In a first step, the latent variable is replaced by its conditional expectation given the observed data. This conditional expectation is estimated using a James–Stein type shrinkage estimator. The second step consists of regressing the dependent variables on this shrinkage estimator. In addition to linear SEMs, we also derive shrinkage estimators to estimate polynomials. We empirically demonstrate the feasibility of the proposed method via simulation and contrast the proposed estimator with ML and MIIV estimators under a limited number of simulation scenarios. We illustrate the method on a case study. |
doi_str_mv | 10.1007/s11336-021-09749-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2503630377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503630377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-16eb8f69179b0995ca47b7681cc69e81a0f6fe64e58628407a0c564bed4e74793</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EgvK4AAsUiQ2bwDh2_FiiqrwEYtF2bTnppKSkSWsni-64AzfkJLi0gMSClTX2N79nPkJOKVxSAHnlKWVMxJDQGLTkOk52SI8qAaFUsEt6AIzFjCbsgBx6PwMATZXaJweMSaaEEj0yHPi2nNu2rKfRsHVd3nbOVtFg2YW7po6emglWPhr7NfBg5-g_3t6HLZZ1NFotMBq-uLJ-tVOMtkGN88dkr7CVx5PteUTGN4NR_y5-fL69718_xjmTaRtTgZkqhKZSZ6B1mlsuMykUzXOhUVELhShQcEyVSBQHaSFPBc9wwlFyqdkRudjkLlyz7NC3Zl76HKvK1th03iQpMMGASRnQ8z_orOlcHaYLFAWuw0Q8UMmGyl3jvcPCLFzYya0MBbNWbjbKTVBuvpSbJDSdbaO7bI6Tn5ZvxwFgG8CHp3qK7vfvf2I_AVGtjCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510493754</pqid></control><display><type>article</type><title>Estimating Structural Equation Models Using James–Stein Type Shrinkage Estimators</title><source>Education Source (EBSCOhost)</source><source>SpringerLink Journals</source><creator>Burghgraeve, Elissa ; De Neve, Jan ; Rosseel, Yves</creator><creatorcontrib>Burghgraeve, Elissa ; De Neve, Jan ; Rosseel, Yves</creatorcontrib><description>We propose a two-step procedure to estimate structural equation models (SEMs). In a first step, the latent variable is replaced by its conditional expectation given the observed data. This conditional expectation is estimated using a James–Stein type shrinkage estimator. The second step consists of regressing the dependent variables on this shrinkage estimator. In addition to linear SEMs, we also derive shrinkage estimators to estimate polynomials. We empirically demonstrate the feasibility of the proposed method via simulation and contrast the proposed estimator with ML and MIIV estimators under a limited number of simulation scenarios. We illustrate the method on a case study.</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-021-09749-2</identifier><identifier>PMID: 33738686</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Assessment ; Behavioral Science and Psychology ; Humanities ; Law ; Psychology ; Psychometrics ; Regression analysis ; Simulation ; Statistical Theory and Methods ; Statistics for Social Sciences ; Structural equation modeling ; Testing and Evaluation ; Theory and Methods ; Variables</subject><ispartof>Psychometrika, 2021-03, Vol.86 (1), p.96-130</ispartof><rights>The Psychometric Society 2021</rights><rights>The Psychometric Society 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-16eb8f69179b0995ca47b7681cc69e81a0f6fe64e58628407a0c564bed4e74793</citedby><cites>FETCH-LOGICAL-c375t-16eb8f69179b0995ca47b7681cc69e81a0f6fe64e58628407a0c564bed4e74793</cites><orcidid>0000-0002-4129-4477 ; 0000-0003-1992-0627 ; 0000-0002-7951-245X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11336-021-09749-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11336-021-09749-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33738686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burghgraeve, Elissa</creatorcontrib><creatorcontrib>De Neve, Jan</creatorcontrib><creatorcontrib>Rosseel, Yves</creatorcontrib><title>Estimating Structural Equation Models Using James–Stein Type Shrinkage Estimators</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><addtitle>Psychometrika</addtitle><description>We propose a two-step procedure to estimate structural equation models (SEMs). In a first step, the latent variable is replaced by its conditional expectation given the observed data. This conditional expectation is estimated using a James–Stein type shrinkage estimator. The second step consists of regressing the dependent variables on this shrinkage estimator. In addition to linear SEMs, we also derive shrinkage estimators to estimate polynomials. We empirically demonstrate the feasibility of the proposed method via simulation and contrast the proposed estimator with ML and MIIV estimators under a limited number of simulation scenarios. We illustrate the method on a case study.</description><subject>Assessment</subject><subject>Behavioral Science and Psychology</subject><subject>Humanities</subject><subject>Law</subject><subject>Psychology</subject><subject>Psychometrics</subject><subject>Regression analysis</subject><subject>Simulation</subject><subject>Statistical Theory and Methods</subject><subject>Statistics for Social Sciences</subject><subject>Structural equation modeling</subject><subject>Testing and Evaluation</subject><subject>Theory and Methods</subject><subject>Variables</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtOwzAQhi0EgvK4AAsUiQ2bwDh2_FiiqrwEYtF2bTnppKSkSWsni-64AzfkJLi0gMSClTX2N79nPkJOKVxSAHnlKWVMxJDQGLTkOk52SI8qAaFUsEt6AIzFjCbsgBx6PwMATZXaJweMSaaEEj0yHPi2nNu2rKfRsHVd3nbOVtFg2YW7po6emglWPhr7NfBg5-g_3t6HLZZ1NFotMBq-uLJ-tVOMtkGN88dkr7CVx5PteUTGN4NR_y5-fL69718_xjmTaRtTgZkqhKZSZ6B1mlsuMykUzXOhUVELhShQcEyVSBQHaSFPBc9wwlFyqdkRudjkLlyz7NC3Zl76HKvK1th03iQpMMGASRnQ8z_orOlcHaYLFAWuw0Q8UMmGyl3jvcPCLFzYya0MBbNWbjbKTVBuvpSbJDSdbaO7bI6Tn5ZvxwFgG8CHp3qK7vfvf2I_AVGtjCs</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Burghgraeve, Elissa</creator><creator>De Neve, Jan</creator><creator>Rosseel, Yves</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TK</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0P</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4129-4477</orcidid><orcidid>https://orcid.org/0000-0003-1992-0627</orcidid><orcidid>https://orcid.org/0000-0002-7951-245X</orcidid></search><sort><creationdate>20210301</creationdate><title>Estimating Structural Equation Models Using James–Stein Type Shrinkage Estimators</title><author>Burghgraeve, Elissa ; De Neve, Jan ; Rosseel, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-16eb8f69179b0995ca47b7681cc69e81a0f6fe64e58628407a0c564bed4e74793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Assessment</topic><topic>Behavioral Science and Psychology</topic><topic>Humanities</topic><topic>Law</topic><topic>Psychology</topic><topic>Psychometrics</topic><topic>Regression analysis</topic><topic>Simulation</topic><topic>Statistical Theory and Methods</topic><topic>Statistics for Social Sciences</topic><topic>Structural equation modeling</topic><topic>Testing and Evaluation</topic><topic>Theory and Methods</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burghgraeve, Elissa</creatorcontrib><creatorcontrib>De Neve, Jan</creatorcontrib><creatorcontrib>Rosseel, Yves</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Education Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burghgraeve, Elissa</au><au>De Neve, Jan</au><au>Rosseel, Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Structural Equation Models Using James–Stein Type Shrinkage Estimators</atitle><jtitle>Psychometrika</jtitle><stitle>Psychometrika</stitle><addtitle>Psychometrika</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>86</volume><issue>1</issue><spage>96</spage><epage>130</epage><pages>96-130</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><abstract>We propose a two-step procedure to estimate structural equation models (SEMs). In a first step, the latent variable is replaced by its conditional expectation given the observed data. This conditional expectation is estimated using a James–Stein type shrinkage estimator. The second step consists of regressing the dependent variables on this shrinkage estimator. In addition to linear SEMs, we also derive shrinkage estimators to estimate polynomials. We empirically demonstrate the feasibility of the proposed method via simulation and contrast the proposed estimator with ML and MIIV estimators under a limited number of simulation scenarios. We illustrate the method on a case study.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33738686</pmid><doi>10.1007/s11336-021-09749-2</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-4129-4477</orcidid><orcidid>https://orcid.org/0000-0003-1992-0627</orcidid><orcidid>https://orcid.org/0000-0002-7951-245X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-3123 |
ispartof | Psychometrika, 2021-03, Vol.86 (1), p.96-130 |
issn | 0033-3123 1860-0980 |
language | eng |
recordid | cdi_proquest_miscellaneous_2503630377 |
source | Education Source (EBSCOhost); SpringerLink Journals |
subjects | Assessment Behavioral Science and Psychology Humanities Law Psychology Psychometrics Regression analysis Simulation Statistical Theory and Methods Statistics for Social Sciences Structural equation modeling Testing and Evaluation Theory and Methods Variables |
title | Estimating Structural Equation Models Using James–Stein Type Shrinkage Estimators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Structural%20Equation%20Models%20Using%20James%E2%80%93Stein%20Type%20Shrinkage%20Estimators&rft.jtitle=Psychometrika&rft.au=Burghgraeve,%20Elissa&rft.date=2021-03-01&rft.volume=86&rft.issue=1&rft.spage=96&rft.epage=130&rft.pages=96-130&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/s11336-021-09749-2&rft_dat=%3Cproquest_cross%3E2503630377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510493754&rft_id=info:pmid/33738686&rfr_iscdi=true |