Assessment of riemann solvers for unsteady one-dimensional inviscid flows of perfect gases

The solution of Riemann problems for the one-dimensional Euler equations with polytropic gases usually involves a numerical iterative solution procedure, and more efficient Riemann solvers can reduce computational times and costs by factors of up to 25, Riemann solvers that have been used in past co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 1988-10, Vol.78 (2), p.437-458
Hauptverfasser: Gottlieb, J.J, Groth, C.P.T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 458
container_issue 2
container_start_page 437
container_title Journal of computational physics
container_volume 78
creator Gottlieb, J.J
Groth, C.P.T
description The solution of Riemann problems for the one-dimensional Euler equations with polytropic gases usually involves a numerical iterative solution procedure, and more efficient Riemann solvers can reduce computational times and costs by factors of up to 25, Riemann solvers that have been used in past computational fluid dynamics, those that are used in current numerical work, and a new and more efficient one reported in this paper are all assessed in terms of their relative computational performance. This assessment includes the type of shock and rarefaction-wave equations, iterative procedures, and initial guesses used by Godunov, Chorin, Van Leer, Smoller, and others. Various aspects of the Riemann problem and its solution for unsteady flows are also discussed in terms of the pressure-velocity diagram, both for completeness and to add some new practical insights for improving computer codes.
doi_str_mv 10.1016/0021-9991(88)90059-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25035334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021999188900599</els_id><sourcerecordid>25035334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-ab6e0a68348e7ded7e1949969f8dac20054397d83d7ae7759ec40d35f29666833</originalsourceid><addsrcrecordid>eNp9kLtKRDEQhoMouF7ewCKFiBZHk3NL0ggi3kCw0cYmxGQikbPJmjm74tub4y6WVtN8_z8zHyFHnJ1zxvsLxmpeKaX4qZRnirFOVWqLzDhTrKoF77fJ7A_ZJXuIH4wx2bVyRl6vEAFxDnGkydMcYG5ipJiGFWSkPmW6jDiCcd80RahcKCiGFM1AQ1wFtMFRP6QvnOILyB7sSN9NKT0gO94MCIebuU9ebm-er--rx6e7h-urx8q2vB4r89YDM71sWgnCgRPAVatUr7x0xtblm7ZRwsnGCQNCdApsy1zT-Vr1fYk1--Rk3bvI6XMJOOp5OQuGwURIS9R1x5quadoCtmvQ5oSYwetFDnOTvzVnehKpJ0t6sqSl1L8itSqx402_QWsGn020Af-yggtW1xN2ucag_LoKkHVxA9GCC7k40S6F__f8ADNmh6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25035334</pqid></control><display><type>article</type><title>Assessment of riemann solvers for unsteady one-dimensional inviscid flows of perfect gases</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gottlieb, J.J ; Groth, C.P.T</creator><creatorcontrib>Gottlieb, J.J ; Groth, C.P.T</creatorcontrib><description>The solution of Riemann problems for the one-dimensional Euler equations with polytropic gases usually involves a numerical iterative solution procedure, and more efficient Riemann solvers can reduce computational times and costs by factors of up to 25, Riemann solvers that have been used in past computational fluid dynamics, those that are used in current numerical work, and a new and more efficient one reported in this paper are all assessed in terms of their relative computational performance. This assessment includes the type of shock and rarefaction-wave equations, iterative procedures, and initial guesses used by Godunov, Chorin, Van Leer, Smoller, and others. Various aspects of the Riemann problem and its solution for unsteady flows are also discussed in terms of the pressure-velocity diagram, both for completeness and to add some new practical insights for improving computer codes.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/0021-9991(88)90059-9</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Compressible flows; shock and detonation phenomena ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics</subject><ispartof>Journal of computational physics, 1988-10, Vol.78 (2), p.437-458</ispartof><rights>1988</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-ab6e0a68348e7ded7e1949969f8dac20054397d83d7ae7759ec40d35f29666833</citedby><cites>FETCH-LOGICAL-c412t-ab6e0a68348e7ded7e1949969f8dac20054397d83d7ae7759ec40d35f29666833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0021-9991(88)90059-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7170229$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gottlieb, J.J</creatorcontrib><creatorcontrib>Groth, C.P.T</creatorcontrib><title>Assessment of riemann solvers for unsteady one-dimensional inviscid flows of perfect gases</title><title>Journal of computational physics</title><description>The solution of Riemann problems for the one-dimensional Euler equations with polytropic gases usually involves a numerical iterative solution procedure, and more efficient Riemann solvers can reduce computational times and costs by factors of up to 25, Riemann solvers that have been used in past computational fluid dynamics, those that are used in current numerical work, and a new and more efficient one reported in this paper are all assessed in terms of their relative computational performance. This assessment includes the type of shock and rarefaction-wave equations, iterative procedures, and initial guesses used by Godunov, Chorin, Van Leer, Smoller, and others. Various aspects of the Riemann problem and its solution for unsteady flows are also discussed in terms of the pressure-velocity diagram, both for completeness and to add some new practical insights for improving computer codes.</description><subject>Compressible flows; shock and detonation phenomena</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp9kLtKRDEQhoMouF7ewCKFiBZHk3NL0ggi3kCw0cYmxGQikbPJmjm74tub4y6WVtN8_z8zHyFHnJ1zxvsLxmpeKaX4qZRnirFOVWqLzDhTrKoF77fJ7A_ZJXuIH4wx2bVyRl6vEAFxDnGkydMcYG5ipJiGFWSkPmW6jDiCcd80RahcKCiGFM1AQ1wFtMFRP6QvnOILyB7sSN9NKT0gO94MCIebuU9ebm-er--rx6e7h-urx8q2vB4r89YDM71sWgnCgRPAVatUr7x0xtblm7ZRwsnGCQNCdApsy1zT-Vr1fYk1--Rk3bvI6XMJOOp5OQuGwURIS9R1x5quadoCtmvQ5oSYwetFDnOTvzVnehKpJ0t6sqSl1L8itSqx402_QWsGn020Af-yggtW1xN2ucag_LoKkHVxA9GCC7k40S6F__f8ADNmh6A</recordid><startdate>19881001</startdate><enddate>19881001</enddate><creator>Gottlieb, J.J</creator><creator>Groth, C.P.T</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19881001</creationdate><title>Assessment of riemann solvers for unsteady one-dimensional inviscid flows of perfect gases</title><author>Gottlieb, J.J ; Groth, C.P.T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-ab6e0a68348e7ded7e1949969f8dac20054397d83d7ae7759ec40d35f29666833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Compressible flows; shock and detonation phenomena</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gottlieb, J.J</creatorcontrib><creatorcontrib>Groth, C.P.T</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gottlieb, J.J</au><au>Groth, C.P.T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of riemann solvers for unsteady one-dimensional inviscid flows of perfect gases</atitle><jtitle>Journal of computational physics</jtitle><date>1988-10-01</date><risdate>1988</risdate><volume>78</volume><issue>2</issue><spage>437</spage><epage>458</epage><pages>437-458</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The solution of Riemann problems for the one-dimensional Euler equations with polytropic gases usually involves a numerical iterative solution procedure, and more efficient Riemann solvers can reduce computational times and costs by factors of up to 25, Riemann solvers that have been used in past computational fluid dynamics, those that are used in current numerical work, and a new and more efficient one reported in this paper are all assessed in terms of their relative computational performance. This assessment includes the type of shock and rarefaction-wave equations, iterative procedures, and initial guesses used by Godunov, Chorin, Van Leer, Smoller, and others. Various aspects of the Riemann problem and its solution for unsteady flows are also discussed in terms of the pressure-velocity diagram, both for completeness and to add some new practical insights for improving computer codes.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/0021-9991(88)90059-9</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 1988-10, Vol.78 (2), p.437-458
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_25035334
source Elsevier ScienceDirect Journals Complete
subjects Compressible flows
shock and detonation phenomena
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Physics
title Assessment of riemann solvers for unsteady one-dimensional inviscid flows of perfect gases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20riemann%20solvers%20for%20unsteady%20one-dimensional%20inviscid%20flows%20of%20perfect%20gases&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Gottlieb,%20J.J&rft.date=1988-10-01&rft.volume=78&rft.issue=2&rft.spage=437&rft.epage=458&rft.pages=437-458&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/0021-9991(88)90059-9&rft_dat=%3Cproquest_cross%3E25035334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25035334&rft_id=info:pmid/&rft_els_id=0021999188900599&rfr_iscdi=true