Assessment of riemann solvers for unsteady one-dimensional inviscid flows of perfect gases
The solution of Riemann problems for the one-dimensional Euler equations with polytropic gases usually involves a numerical iterative solution procedure, and more efficient Riemann solvers can reduce computational times and costs by factors of up to 25, Riemann solvers that have been used in past co...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 1988-10, Vol.78 (2), p.437-458 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 458 |
---|---|
container_issue | 2 |
container_start_page | 437 |
container_title | Journal of computational physics |
container_volume | 78 |
creator | Gottlieb, J.J Groth, C.P.T |
description | The solution of Riemann problems for the one-dimensional Euler equations with polytropic gases usually involves a numerical iterative solution procedure, and more efficient Riemann solvers can reduce computational times and costs by factors of up to 25, Riemann solvers that have been used in past computational fluid dynamics, those that are used in current numerical work, and a new and more efficient one reported in this paper are all assessed in terms of their relative computational performance. This assessment includes the type of shock and rarefaction-wave equations, iterative procedures, and initial guesses used by Godunov, Chorin, Van Leer, Smoller, and others. Various aspects of the Riemann problem and its solution for unsteady flows are also discussed in terms of the pressure-velocity diagram, both for completeness and to add some new practical insights for improving computer codes. |
doi_str_mv | 10.1016/0021-9991(88)90059-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25035334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021999188900599</els_id><sourcerecordid>25035334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-ab6e0a68348e7ded7e1949969f8dac20054397d83d7ae7759ec40d35f29666833</originalsourceid><addsrcrecordid>eNp9kLtKRDEQhoMouF7ewCKFiBZHk3NL0ggi3kCw0cYmxGQikbPJmjm74tub4y6WVtN8_z8zHyFHnJ1zxvsLxmpeKaX4qZRnirFOVWqLzDhTrKoF77fJ7A_ZJXuIH4wx2bVyRl6vEAFxDnGkydMcYG5ipJiGFWSkPmW6jDiCcd80RahcKCiGFM1AQ1wFtMFRP6QvnOILyB7sSN9NKT0gO94MCIebuU9ebm-er--rx6e7h-urx8q2vB4r89YDM71sWgnCgRPAVatUr7x0xtblm7ZRwsnGCQNCdApsy1zT-Vr1fYk1--Rk3bvI6XMJOOp5OQuGwURIS9R1x5quadoCtmvQ5oSYwetFDnOTvzVnehKpJ0t6sqSl1L8itSqx402_QWsGn020Af-yggtW1xN2ucag_LoKkHVxA9GCC7k40S6F__f8ADNmh6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25035334</pqid></control><display><type>article</type><title>Assessment of riemann solvers for unsteady one-dimensional inviscid flows of perfect gases</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gottlieb, J.J ; Groth, C.P.T</creator><creatorcontrib>Gottlieb, J.J ; Groth, C.P.T</creatorcontrib><description>The solution of Riemann problems for the one-dimensional Euler equations with polytropic gases usually involves a numerical iterative solution procedure, and more efficient Riemann solvers can reduce computational times and costs by factors of up to 25, Riemann solvers that have been used in past computational fluid dynamics, those that are used in current numerical work, and a new and more efficient one reported in this paper are all assessed in terms of their relative computational performance. This assessment includes the type of shock and rarefaction-wave equations, iterative procedures, and initial guesses used by Godunov, Chorin, Van Leer, Smoller, and others. Various aspects of the Riemann problem and its solution for unsteady flows are also discussed in terms of the pressure-velocity diagram, both for completeness and to add some new practical insights for improving computer codes.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/0021-9991(88)90059-9</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Compressible flows; shock and detonation phenomena ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics</subject><ispartof>Journal of computational physics, 1988-10, Vol.78 (2), p.437-458</ispartof><rights>1988</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-ab6e0a68348e7ded7e1949969f8dac20054397d83d7ae7759ec40d35f29666833</citedby><cites>FETCH-LOGICAL-c412t-ab6e0a68348e7ded7e1949969f8dac20054397d83d7ae7759ec40d35f29666833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0021-9991(88)90059-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7170229$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gottlieb, J.J</creatorcontrib><creatorcontrib>Groth, C.P.T</creatorcontrib><title>Assessment of riemann solvers for unsteady one-dimensional inviscid flows of perfect gases</title><title>Journal of computational physics</title><description>The solution of Riemann problems for the one-dimensional Euler equations with polytropic gases usually involves a numerical iterative solution procedure, and more efficient Riemann solvers can reduce computational times and costs by factors of up to 25, Riemann solvers that have been used in past computational fluid dynamics, those that are used in current numerical work, and a new and more efficient one reported in this paper are all assessed in terms of their relative computational performance. This assessment includes the type of shock and rarefaction-wave equations, iterative procedures, and initial guesses used by Godunov, Chorin, Van Leer, Smoller, and others. Various aspects of the Riemann problem and its solution for unsteady flows are also discussed in terms of the pressure-velocity diagram, both for completeness and to add some new practical insights for improving computer codes.</description><subject>Compressible flows; shock and detonation phenomena</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp9kLtKRDEQhoMouF7ewCKFiBZHk3NL0ggi3kCw0cYmxGQikbPJmjm74tub4y6WVtN8_z8zHyFHnJ1zxvsLxmpeKaX4qZRnirFOVWqLzDhTrKoF77fJ7A_ZJXuIH4wx2bVyRl6vEAFxDnGkydMcYG5ipJiGFWSkPmW6jDiCcd80RahcKCiGFM1AQ1wFtMFRP6QvnOILyB7sSN9NKT0gO94MCIebuU9ebm-er--rx6e7h-urx8q2vB4r89YDM71sWgnCgRPAVatUr7x0xtblm7ZRwsnGCQNCdApsy1zT-Vr1fYk1--Rk3bvI6XMJOOp5OQuGwURIS9R1x5quadoCtmvQ5oSYwetFDnOTvzVnehKpJ0t6sqSl1L8itSqx402_QWsGn020Af-yggtW1xN2ucag_LoKkHVxA9GCC7k40S6F__f8ADNmh6A</recordid><startdate>19881001</startdate><enddate>19881001</enddate><creator>Gottlieb, J.J</creator><creator>Groth, C.P.T</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19881001</creationdate><title>Assessment of riemann solvers for unsteady one-dimensional inviscid flows of perfect gases</title><author>Gottlieb, J.J ; Groth, C.P.T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-ab6e0a68348e7ded7e1949969f8dac20054397d83d7ae7759ec40d35f29666833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Compressible flows; shock and detonation phenomena</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gottlieb, J.J</creatorcontrib><creatorcontrib>Groth, C.P.T</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gottlieb, J.J</au><au>Groth, C.P.T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of riemann solvers for unsteady one-dimensional inviscid flows of perfect gases</atitle><jtitle>Journal of computational physics</jtitle><date>1988-10-01</date><risdate>1988</risdate><volume>78</volume><issue>2</issue><spage>437</spage><epage>458</epage><pages>437-458</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The solution of Riemann problems for the one-dimensional Euler equations with polytropic gases usually involves a numerical iterative solution procedure, and more efficient Riemann solvers can reduce computational times and costs by factors of up to 25, Riemann solvers that have been used in past computational fluid dynamics, those that are used in current numerical work, and a new and more efficient one reported in this paper are all assessed in terms of their relative computational performance. This assessment includes the type of shock and rarefaction-wave equations, iterative procedures, and initial guesses used by Godunov, Chorin, Van Leer, Smoller, and others. Various aspects of the Riemann problem and its solution for unsteady flows are also discussed in terms of the pressure-velocity diagram, both for completeness and to add some new practical insights for improving computer codes.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/0021-9991(88)90059-9</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 1988-10, Vol.78 (2), p.437-458 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_25035334 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Compressible flows shock and detonation phenomena Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Physics |
title | Assessment of riemann solvers for unsteady one-dimensional inviscid flows of perfect gases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20riemann%20solvers%20for%20unsteady%20one-dimensional%20inviscid%20flows%20of%20perfect%20gases&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Gottlieb,%20J.J&rft.date=1988-10-01&rft.volume=78&rft.issue=2&rft.spage=437&rft.epage=458&rft.pages=437-458&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/0021-9991(88)90059-9&rft_dat=%3Cproquest_cross%3E25035334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25035334&rft_id=info:pmid/&rft_els_id=0021999188900599&rfr_iscdi=true |