Insights on the mechanism of Fe doped ZnO for tightly-bound extracellular polymeric substances tribo-catalytic degradation: The role of hydration layers at the interface
The control of interfacial microbial pollution is of great significance for water safety. Herein, the tribo-catalysis ability of zinc oxide (ZnO) has been investigated, which can realize the control of tightly-bound extracellular polymeric substances (T-EPS) in water under dark environment. The DFT...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2021-08, Vol.276, p.130170-130170, Article 130170 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130170 |
---|---|
container_issue | |
container_start_page | 130170 |
container_title | Chemosphere (Oxford) |
container_volume | 276 |
creator | Hu, Jinglu Ma, Wei Pan, Yuzhen Cheng, Zihong Yu, Shuangen Gao, Jian Zhang, Zhe Wan, Chunxiang Qiu, Chenxi |
description | The control of interfacial microbial pollution is of great significance for water safety. Herein, the tribo-catalysis ability of zinc oxide (ZnO) has been investigated, which can realize the control of tightly-bound extracellular polymeric substances (T-EPS) in water under dark environment. The DFT calculation proves the Fe doping introduces the impurity level and decreases the work function from 5.071 eV to 5.045 eV, improves the charge separation of ZnO, and eventually enhances the catalytic reaction efficiency. Characterizing the catalytic reaction process by three-dimensional fluorescence (3D EEM) and fluorescence regional integration (FRI) method, it is found that the T-EPS solution can be degraded 75.8% by Fe-ZnO in 12 min, while ZnO can only degrade 32.2%. Combining with high-resolution scanning probe microscope (HR-SPM) and attenuated total reflection method (ATR-FTIR), hydration layers consist with hydroxyl layer (∼0.23 nm) and water molecular layer (∼0.27 nm) are observed at the interface between Fe-ZnO and T-EPS solution, and terminal hydroxyl group (OHt) is considered to be the active site for the generation of radicals. This study provides an idea for exploring the mechanism of tribo-catalytic reaction and shows its application prospect in the field of microbial inhibition in water.
[Display omitted]
•Fe doping improves the tribo-catalytic degradation performance of ZnO on T-EPS.•ATR-FTIR results suggest OHt is the main active site for tribo-catalytic reaction.•Study of hydration layers provides a basis for confirm tribo-catalysis mechanism.•Tribo-catalytic reaction can control interfacial microbial pollution in dark. |
doi_str_mv | 10.1016/j.chemosphere.2021.130170 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2503434496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653521006391</els_id><sourcerecordid>2503434496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-764b6661e048234820b3cd90895da0a12b85a6a4a3d7a2a4b51dec7ce5e8feb13</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhS1ERS8tr4DMjk0udpxfduiKQqVK3bSbbqyJPWl85cTBdlDzSLwlTm9BLFlYI9nnzOeZQ8gHzvac8erTca8GHF2YB_S4z1nO91wwXrNXZMebus143javyY6xosyqUpTn5G0IR8aSuWzfkHMh6kIUebUjv66nYB6HGKibaByQjqgGmEwYqevpFVLtZtT0YbqlvfM0blq7Zp1bJk3xKXpQaO1iwdPZ2XVEbxQNSxciTAoDjd50LlMQwa4xPWl89KAhGjd9pneJ553FDTWs2j9fUwsr-kAhPv_HTBF9nyiX5KwHG_DdS70g91df7w7fs5vbb9eHLzeZEnUds7oquqqqOLKiyUU6rBNKt6xpSw0MeN41JVRQgNA15FB0JdeoaoUlNj12XFyQj6e-s3c_FgxRjiZsQ8KEbgkyL5lIyyvaKknbk1R5F4LHXs7ejOBXyZnckpJH-U9ScktKnpJK3vcvmKUbUf91_okmCQ4nAaZhfxr0MiiDaanaeFRRamf-A_Mb1GWu0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503434496</pqid></control><display><type>article</type><title>Insights on the mechanism of Fe doped ZnO for tightly-bound extracellular polymeric substances tribo-catalytic degradation: The role of hydration layers at the interface</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hu, Jinglu ; Ma, Wei ; Pan, Yuzhen ; Cheng, Zihong ; Yu, Shuangen ; Gao, Jian ; Zhang, Zhe ; Wan, Chunxiang ; Qiu, Chenxi</creator><creatorcontrib>Hu, Jinglu ; Ma, Wei ; Pan, Yuzhen ; Cheng, Zihong ; Yu, Shuangen ; Gao, Jian ; Zhang, Zhe ; Wan, Chunxiang ; Qiu, Chenxi</creatorcontrib><description>The control of interfacial microbial pollution is of great significance for water safety. Herein, the tribo-catalysis ability of zinc oxide (ZnO) has been investigated, which can realize the control of tightly-bound extracellular polymeric substances (T-EPS) in water under dark environment. The DFT calculation proves the Fe doping introduces the impurity level and decreases the work function from 5.071 eV to 5.045 eV, improves the charge separation of ZnO, and eventually enhances the catalytic reaction efficiency. Characterizing the catalytic reaction process by three-dimensional fluorescence (3D EEM) and fluorescence regional integration (FRI) method, it is found that the T-EPS solution can be degraded 75.8% by Fe-ZnO in 12 min, while ZnO can only degrade 32.2%. Combining with high-resolution scanning probe microscope (HR-SPM) and attenuated total reflection method (ATR-FTIR), hydration layers consist with hydroxyl layer (∼0.23 nm) and water molecular layer (∼0.27 nm) are observed at the interface between Fe-ZnO and T-EPS solution, and terminal hydroxyl group (OHt) is considered to be the active site for the generation of radicals. This study provides an idea for exploring the mechanism of tribo-catalytic reaction and shows its application prospect in the field of microbial inhibition in water.
[Display omitted]
•Fe doping improves the tribo-catalytic degradation performance of ZnO on T-EPS.•ATR-FTIR results suggest OHt is the main active site for tribo-catalytic reaction.•Study of hydration layers provides a basis for confirm tribo-catalysis mechanism.•Tribo-catalytic reaction can control interfacial microbial pollution in dark.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2021.130170</identifier><identifier>PMID: 33743426</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Extracellular polymeric substances ; Hydration layers ; Hydroxyl radical ; Iron-doped ; Surface hydroxyl groups ; Zinc oxide</subject><ispartof>Chemosphere (Oxford), 2021-08, Vol.276, p.130170-130170, Article 130170</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-764b6661e048234820b3cd90895da0a12b85a6a4a3d7a2a4b51dec7ce5e8feb13</citedby><cites>FETCH-LOGICAL-c377t-764b6661e048234820b3cd90895da0a12b85a6a4a3d7a2a4b51dec7ce5e8feb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045653521006391$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33743426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Jinglu</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Pan, Yuzhen</creatorcontrib><creatorcontrib>Cheng, Zihong</creatorcontrib><creatorcontrib>Yu, Shuangen</creatorcontrib><creatorcontrib>Gao, Jian</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Wan, Chunxiang</creatorcontrib><creatorcontrib>Qiu, Chenxi</creatorcontrib><title>Insights on the mechanism of Fe doped ZnO for tightly-bound extracellular polymeric substances tribo-catalytic degradation: The role of hydration layers at the interface</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>The control of interfacial microbial pollution is of great significance for water safety. Herein, the tribo-catalysis ability of zinc oxide (ZnO) has been investigated, which can realize the control of tightly-bound extracellular polymeric substances (T-EPS) in water under dark environment. The DFT calculation proves the Fe doping introduces the impurity level and decreases the work function from 5.071 eV to 5.045 eV, improves the charge separation of ZnO, and eventually enhances the catalytic reaction efficiency. Characterizing the catalytic reaction process by three-dimensional fluorescence (3D EEM) and fluorescence regional integration (FRI) method, it is found that the T-EPS solution can be degraded 75.8% by Fe-ZnO in 12 min, while ZnO can only degrade 32.2%. Combining with high-resolution scanning probe microscope (HR-SPM) and attenuated total reflection method (ATR-FTIR), hydration layers consist with hydroxyl layer (∼0.23 nm) and water molecular layer (∼0.27 nm) are observed at the interface between Fe-ZnO and T-EPS solution, and terminal hydroxyl group (OHt) is considered to be the active site for the generation of radicals. This study provides an idea for exploring the mechanism of tribo-catalytic reaction and shows its application prospect in the field of microbial inhibition in water.
[Display omitted]
•Fe doping improves the tribo-catalytic degradation performance of ZnO on T-EPS.•ATR-FTIR results suggest OHt is the main active site for tribo-catalytic reaction.•Study of hydration layers provides a basis for confirm tribo-catalysis mechanism.•Tribo-catalytic reaction can control interfacial microbial pollution in dark.</description><subject>Extracellular polymeric substances</subject><subject>Hydration layers</subject><subject>Hydroxyl radical</subject><subject>Iron-doped</subject><subject>Surface hydroxyl groups</subject><subject>Zinc oxide</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1TAQhS1ERS8tr4DMjk0udpxfduiKQqVK3bSbbqyJPWl85cTBdlDzSLwlTm9BLFlYI9nnzOeZQ8gHzvac8erTca8GHF2YB_S4z1nO91wwXrNXZMebus143javyY6xosyqUpTn5G0IR8aSuWzfkHMh6kIUebUjv66nYB6HGKibaByQjqgGmEwYqevpFVLtZtT0YbqlvfM0blq7Zp1bJk3xKXpQaO1iwdPZ2XVEbxQNSxciTAoDjd50LlMQwa4xPWl89KAhGjd9pneJ553FDTWs2j9fUwsr-kAhPv_HTBF9nyiX5KwHG_DdS70g91df7w7fs5vbb9eHLzeZEnUds7oquqqqOLKiyUU6rBNKt6xpSw0MeN41JVRQgNA15FB0JdeoaoUlNj12XFyQj6e-s3c_FgxRjiZsQ8KEbgkyL5lIyyvaKknbk1R5F4LHXs7ejOBXyZnckpJH-U9ScktKnpJK3vcvmKUbUf91_okmCQ4nAaZhfxr0MiiDaanaeFRRamf-A_Mb1GWu0Q</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Hu, Jinglu</creator><creator>Ma, Wei</creator><creator>Pan, Yuzhen</creator><creator>Cheng, Zihong</creator><creator>Yu, Shuangen</creator><creator>Gao, Jian</creator><creator>Zhang, Zhe</creator><creator>Wan, Chunxiang</creator><creator>Qiu, Chenxi</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210801</creationdate><title>Insights on the mechanism of Fe doped ZnO for tightly-bound extracellular polymeric substances tribo-catalytic degradation: The role of hydration layers at the interface</title><author>Hu, Jinglu ; Ma, Wei ; Pan, Yuzhen ; Cheng, Zihong ; Yu, Shuangen ; Gao, Jian ; Zhang, Zhe ; Wan, Chunxiang ; Qiu, Chenxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-764b6661e048234820b3cd90895da0a12b85a6a4a3d7a2a4b51dec7ce5e8feb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Extracellular polymeric substances</topic><topic>Hydration layers</topic><topic>Hydroxyl radical</topic><topic>Iron-doped</topic><topic>Surface hydroxyl groups</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jinglu</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Pan, Yuzhen</creatorcontrib><creatorcontrib>Cheng, Zihong</creatorcontrib><creatorcontrib>Yu, Shuangen</creatorcontrib><creatorcontrib>Gao, Jian</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Wan, Chunxiang</creatorcontrib><creatorcontrib>Qiu, Chenxi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jinglu</au><au>Ma, Wei</au><au>Pan, Yuzhen</au><au>Cheng, Zihong</au><au>Yu, Shuangen</au><au>Gao, Jian</au><au>Zhang, Zhe</au><au>Wan, Chunxiang</au><au>Qiu, Chenxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights on the mechanism of Fe doped ZnO for tightly-bound extracellular polymeric substances tribo-catalytic degradation: The role of hydration layers at the interface</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>276</volume><spage>130170</spage><epage>130170</epage><pages>130170-130170</pages><artnum>130170</artnum><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>The control of interfacial microbial pollution is of great significance for water safety. Herein, the tribo-catalysis ability of zinc oxide (ZnO) has been investigated, which can realize the control of tightly-bound extracellular polymeric substances (T-EPS) in water under dark environment. The DFT calculation proves the Fe doping introduces the impurity level and decreases the work function from 5.071 eV to 5.045 eV, improves the charge separation of ZnO, and eventually enhances the catalytic reaction efficiency. Characterizing the catalytic reaction process by three-dimensional fluorescence (3D EEM) and fluorescence regional integration (FRI) method, it is found that the T-EPS solution can be degraded 75.8% by Fe-ZnO in 12 min, while ZnO can only degrade 32.2%. Combining with high-resolution scanning probe microscope (HR-SPM) and attenuated total reflection method (ATR-FTIR), hydration layers consist with hydroxyl layer (∼0.23 nm) and water molecular layer (∼0.27 nm) are observed at the interface between Fe-ZnO and T-EPS solution, and terminal hydroxyl group (OHt) is considered to be the active site for the generation of radicals. This study provides an idea for exploring the mechanism of tribo-catalytic reaction and shows its application prospect in the field of microbial inhibition in water.
[Display omitted]
•Fe doping improves the tribo-catalytic degradation performance of ZnO on T-EPS.•ATR-FTIR results suggest OHt is the main active site for tribo-catalytic reaction.•Study of hydration layers provides a basis for confirm tribo-catalysis mechanism.•Tribo-catalytic reaction can control interfacial microbial pollution in dark.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33743426</pmid><doi>10.1016/j.chemosphere.2021.130170</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-6535 |
ispartof | Chemosphere (Oxford), 2021-08, Vol.276, p.130170-130170, Article 130170 |
issn | 0045-6535 1879-1298 |
language | eng |
recordid | cdi_proquest_miscellaneous_2503434496 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Extracellular polymeric substances Hydration layers Hydroxyl radical Iron-doped Surface hydroxyl groups Zinc oxide |
title | Insights on the mechanism of Fe doped ZnO for tightly-bound extracellular polymeric substances tribo-catalytic degradation: The role of hydration layers at the interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T02%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20on%20the%20mechanism%20of%20Fe%20doped%20ZnO%20for%20tightly-bound%20extracellular%20polymeric%20substances%20tribo-catalytic%20degradation:%20The%20role%20of%20hydration%20layers%20at%20the%20interface&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Hu,%20Jinglu&rft.date=2021-08-01&rft.volume=276&rft.spage=130170&rft.epage=130170&rft.pages=130170-130170&rft.artnum=130170&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2021.130170&rft_dat=%3Cproquest_cross%3E2503434496%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503434496&rft_id=info:pmid/33743426&rft_els_id=S0045653521006391&rfr_iscdi=true |