Low-Voltage Electron-Probe Microanalysis of Uranium

Electron-probe microanalysis of uranium and uranium alloys poses several problems, such as rapid oxidation, large poorly constrained correction factors, and a large number of characteristic x-ray lines. We show that U-metal can grow 10 nm of oxide within ~20 s of air exposure, increasing to 15–20 nm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy and microanalysis 2021-06, Vol.27 (3), p.466-483
Hauptverfasser: Matthews, Mike B., Kearns, Stuart L., Buse, Ben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 483
container_issue 3
container_start_page 466
container_title Microscopy and microanalysis
container_volume 27
creator Matthews, Mike B.
Kearns, Stuart L.
Buse, Ben
description Electron-probe microanalysis of uranium and uranium alloys poses several problems, such as rapid oxidation, large poorly constrained correction factors, and a large number of characteristic x-ray lines. We show that U-metal can grow 10 nm of oxide within ~20 s of air exposure, increasing to 15–20 nm within a few minutes, which can produce a 30% quantification error at 5 kV. A 15 nm carbon coating on the UO2 reference material also produces an ~30% quantification error of the uncoated but surface oxidized U sample at 5 kV. Correcting for both the coating and oxide improved the analysis accuracy to better than ±1% down to 7 kV and ~2% at 5 kV, but the error increases strongly below this. The measurement of C in U identified a previously unreported U N6–O4 line interference on the C Kα peak, which can produce over 1% error in the analysis total. Oxide stoichiometry was demonstrated to have only a small impact on quantification. The measurement of the O Kα and U Mα mass absorption coefficients in U as 9,528 and 798 cm2/g, respectively, shows good agreement with recently published values and also produces small differences in a quantification error.
doi_str_mv 10.1017/S1431927621000192
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2502809952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1431927621000192</cupid><sourcerecordid>2502809952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-fccb949fcb60d742fc3bd50054b74f0149ecf780b89df8ff5f18c2382e4ea3393</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlZ_gBdZ8OJlNZNkP3KUUj-goqD1uiTZpGzZ3dRkF-m_N2urguJphpln3pl5EToFfAkYsqtnYBQ4yVICGOOQ7aFxKCVxDpDsf-YQD_0ROvJ-FRiKs_QQjSjNKBDCx4jO7Xv8autOLHU0q7XqnG3jJ2eljh4q5axoRb3xlY-siRZOtFXfHKMDI2qvT3ZxghY3s5fpXTx_vL2fXs9jxSDtYqOU5IwbJVNcZowYRWWZYJwwmTGDgXGtTJZjmfPS5MYkBnJFaE4004JSTifoYqu7dvat174rmsorXdei1bb3BUkwyTHnCQno-S90ZXsXTh8oRhkh4fFAwZYKf3nvtCnWrmqE2xSAi8HR4o-jYeZsp9zLRpffE18WBoDuREUjXVUu9c_u_2U_ABTLfgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543422076</pqid></control><display><type>article</type><title>Low-Voltage Electron-Probe Microanalysis of Uranium</title><source>Cambridge University Press Journals Complete</source><creator>Matthews, Mike B. ; Kearns, Stuart L. ; Buse, Ben</creator><creatorcontrib>Matthews, Mike B. ; Kearns, Stuart L. ; Buse, Ben</creatorcontrib><description>Electron-probe microanalysis of uranium and uranium alloys poses several problems, such as rapid oxidation, large poorly constrained correction factors, and a large number of characteristic x-ray lines. We show that U-metal can grow 10 nm of oxide within ~20 s of air exposure, increasing to 15–20 nm within a few minutes, which can produce a 30% quantification error at 5 kV. A 15 nm carbon coating on the UO2 reference material also produces an ~30% quantification error of the uncoated but surface oxidized U sample at 5 kV. Correcting for both the coating and oxide improved the analysis accuracy to better than ±1% down to 7 kV and ~2% at 5 kV, but the error increases strongly below this. The measurement of C in U identified a previously unreported U N6–O4 line interference on the C Kα peak, which can produce over 1% error in the analysis total. Oxide stoichiometry was demonstrated to have only a small impact on quantification. The measurement of the O Kα and U Mα mass absorption coefficients in U as 9,528 and 798 cm2/g, respectively, shows good agreement with recently published values and also produces small differences in a quantification error.</description><identifier>ISSN: 1431-9276</identifier><identifier>EISSN: 1435-8115</identifier><identifier>DOI: 10.1017/S1431927621000192</identifier><identifier>PMID: 33731229</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Absorptivity ; Accuracy ; Air exposure ; Electron probe microanalysis ; Energy ; Error analysis ; Investigations ; Materials Science Applications ; Oxidation ; Stoichiometry ; Uranium ; Uranium base alloys ; Uranium dioxide ; X-rays</subject><ispartof>Microscopy and microanalysis, 2021-06, Vol.27 (3), p.466-483</ispartof><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-fccb949fcb60d742fc3bd50054b74f0149ecf780b89df8ff5f18c2382e4ea3393</citedby><cites>FETCH-LOGICAL-c416t-fccb949fcb60d742fc3bd50054b74f0149ecf780b89df8ff5f18c2382e4ea3393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1431927621000192/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33731229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matthews, Mike B.</creatorcontrib><creatorcontrib>Kearns, Stuart L.</creatorcontrib><creatorcontrib>Buse, Ben</creatorcontrib><title>Low-Voltage Electron-Probe Microanalysis of Uranium</title><title>Microscopy and microanalysis</title><addtitle>Microsc Microanal</addtitle><description>Electron-probe microanalysis of uranium and uranium alloys poses several problems, such as rapid oxidation, large poorly constrained correction factors, and a large number of characteristic x-ray lines. We show that U-metal can grow 10 nm of oxide within ~20 s of air exposure, increasing to 15–20 nm within a few minutes, which can produce a 30% quantification error at 5 kV. A 15 nm carbon coating on the UO2 reference material also produces an ~30% quantification error of the uncoated but surface oxidized U sample at 5 kV. Correcting for both the coating and oxide improved the analysis accuracy to better than ±1% down to 7 kV and ~2% at 5 kV, but the error increases strongly below this. The measurement of C in U identified a previously unreported U N6–O4 line interference on the C Kα peak, which can produce over 1% error in the analysis total. Oxide stoichiometry was demonstrated to have only a small impact on quantification. The measurement of the O Kα and U Mα mass absorption coefficients in U as 9,528 and 798 cm2/g, respectively, shows good agreement with recently published values and also produces small differences in a quantification error.</description><subject>Absorptivity</subject><subject>Accuracy</subject><subject>Air exposure</subject><subject>Electron probe microanalysis</subject><subject>Energy</subject><subject>Error analysis</subject><subject>Investigations</subject><subject>Materials Science Applications</subject><subject>Oxidation</subject><subject>Stoichiometry</subject><subject>Uranium</subject><subject>Uranium base alloys</subject><subject>Uranium dioxide</subject><subject>X-rays</subject><issn>1431-9276</issn><issn>1435-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMotlZ_gBdZ8OJlNZNkP3KUUj-goqD1uiTZpGzZ3dRkF-m_N2urguJphpln3pl5EToFfAkYsqtnYBQ4yVICGOOQ7aFxKCVxDpDsf-YQD_0ROvJ-FRiKs_QQjSjNKBDCx4jO7Xv8autOLHU0q7XqnG3jJ2eljh4q5axoRb3xlY-siRZOtFXfHKMDI2qvT3ZxghY3s5fpXTx_vL2fXs9jxSDtYqOU5IwbJVNcZowYRWWZYJwwmTGDgXGtTJZjmfPS5MYkBnJFaE4004JSTifoYqu7dvat174rmsorXdei1bb3BUkwyTHnCQno-S90ZXsXTh8oRhkh4fFAwZYKf3nvtCnWrmqE2xSAi8HR4o-jYeZsp9zLRpffE18WBoDuREUjXVUu9c_u_2U_ABTLfgQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Matthews, Mike B.</creator><creator>Kearns, Stuart L.</creator><creator>Buse, Ben</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20210601</creationdate><title>Low-Voltage Electron-Probe Microanalysis of Uranium</title><author>Matthews, Mike B. ; Kearns, Stuart L. ; Buse, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-fccb949fcb60d742fc3bd50054b74f0149ecf780b89df8ff5f18c2382e4ea3393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorptivity</topic><topic>Accuracy</topic><topic>Air exposure</topic><topic>Electron probe microanalysis</topic><topic>Energy</topic><topic>Error analysis</topic><topic>Investigations</topic><topic>Materials Science Applications</topic><topic>Oxidation</topic><topic>Stoichiometry</topic><topic>Uranium</topic><topic>Uranium base alloys</topic><topic>Uranium dioxide</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matthews, Mike B.</creatorcontrib><creatorcontrib>Kearns, Stuart L.</creatorcontrib><creatorcontrib>Buse, Ben</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy and microanalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matthews, Mike B.</au><au>Kearns, Stuart L.</au><au>Buse, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Voltage Electron-Probe Microanalysis of Uranium</atitle><jtitle>Microscopy and microanalysis</jtitle><addtitle>Microsc Microanal</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>27</volume><issue>3</issue><spage>466</spage><epage>483</epage><pages>466-483</pages><issn>1431-9276</issn><eissn>1435-8115</eissn><abstract>Electron-probe microanalysis of uranium and uranium alloys poses several problems, such as rapid oxidation, large poorly constrained correction factors, and a large number of characteristic x-ray lines. We show that U-metal can grow 10 nm of oxide within ~20 s of air exposure, increasing to 15–20 nm within a few minutes, which can produce a 30% quantification error at 5 kV. A 15 nm carbon coating on the UO2 reference material also produces an ~30% quantification error of the uncoated but surface oxidized U sample at 5 kV. Correcting for both the coating and oxide improved the analysis accuracy to better than ±1% down to 7 kV and ~2% at 5 kV, but the error increases strongly below this. The measurement of C in U identified a previously unreported U N6–O4 line interference on the C Kα peak, which can produce over 1% error in the analysis total. Oxide stoichiometry was demonstrated to have only a small impact on quantification. The measurement of the O Kα and U Mα mass absorption coefficients in U as 9,528 and 798 cm2/g, respectively, shows good agreement with recently published values and also produces small differences in a quantification error.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><pmid>33731229</pmid><doi>10.1017/S1431927621000192</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1431-9276
ispartof Microscopy and microanalysis, 2021-06, Vol.27 (3), p.466-483
issn 1431-9276
1435-8115
language eng
recordid cdi_proquest_miscellaneous_2502809952
source Cambridge University Press Journals Complete
subjects Absorptivity
Accuracy
Air exposure
Electron probe microanalysis
Energy
Error analysis
Investigations
Materials Science Applications
Oxidation
Stoichiometry
Uranium
Uranium base alloys
Uranium dioxide
X-rays
title Low-Voltage Electron-Probe Microanalysis of Uranium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Voltage%20Electron-Probe%20Microanalysis%20of%20Uranium&rft.jtitle=Microscopy%20and%20microanalysis&rft.au=Matthews,%20Mike%20B.&rft.date=2021-06-01&rft.volume=27&rft.issue=3&rft.spage=466&rft.epage=483&rft.pages=466-483&rft.issn=1431-9276&rft.eissn=1435-8115&rft_id=info:doi/10.1017/S1431927621000192&rft_dat=%3Cproquest_cross%3E2502809952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543422076&rft_id=info:pmid/33731229&rft_cupid=10_1017_S1431927621000192&rfr_iscdi=true