Uncertainty Quantification and Sensitivity Analysis of Partial Charges on Macroscopic Solvent Properties in Molecular Dynamics Simulations with a Machine Learning Model

The molecular dynamics (MD) simulation technique is among the most broadly used computational methods to investigate atomistic phenomena in a variety of chemical and biological systems. One of the most common (and most uncertain) parametrization steps in MD simulations of soft materials is the assig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2021-04, Vol.61 (4), p.1745-1761
Hauptverfasser: Peerless, James S, Kwansa, Albert L, Hawkins, Branden S, Smith, Ralph C, Yingling, Yaroslava G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1761
container_issue 4
container_start_page 1745
container_title Journal of chemical information and modeling
container_volume 61
creator Peerless, James S
Kwansa, Albert L
Hawkins, Branden S
Smith, Ralph C
Yingling, Yaroslava G
description The molecular dynamics (MD) simulation technique is among the most broadly used computational methods to investigate atomistic phenomena in a variety of chemical and biological systems. One of the most common (and most uncertain) parametrization steps in MD simulations of soft materials is the assignment of partial charges to atoms. Here, we apply uncertainty quantification and sensitivity analysis calculations to assess the uncertainty associated with partial charge assignment in the context of MD simulations of an organic solvent. Our results indicate that the effect of partial charge variance on bulk properties, such as solubility parameters, diffusivity, dipole moment, and density, measured from MD simulations is significant; however, measured properties are observed to be less sensitive to partial charges of less accessible (or buried) atoms. Diffusivity, for example, exhibits a global sensitivity of up to 22 × 10–5 cm2/s per electron charge on some acetonitrile atoms. We then demonstrate that machine learning techniques, such as Gaussian process regression (GPR), can be effective and rapid tools for uncertainty quantification of MD simulations. We show that the formulation and application of an efficient GPR surrogate model for the prediction of responses effectively reduces the computational time of additional sample points from hours to milliseconds. This study provides a much-needed context for the effect that partial charge uncertainty has on MD-derived material properties to illustrate the benefit of considering partial charges as distributions rather than point-values. To aid in this treatment, this work then demonstrates methods for rapid characterization of resulting sensitivity in MD simulations.
doi_str_mv 10.1021/acs.jcim.0c01204
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2502807330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524954689</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-d716e347596f7d16da28dd907bd106062e4facefc794f5be2a6b6a46ed8b48933</originalsourceid><addsrcrecordid>eNp1kU-P0zAQxS0EYncLd07IEhcO2-LYjtMcV-WvVMSishK3aGI726kSu9jOon4jPiYObTkgcZrR-PfeyPMIeVGwRcF48QZ0XOw0DgumWcGZfEQui1LW81qx74_PfVmrC3IV444xIWrFn5ILISpeV9Xykvy6c9qGBOjSgX4dwSXsUENC7yg4QzfWRUz4gPn5xkF_iBip7-gthITQ09UWwr3NI0c_gw4-ar9HTTe-f7Au0dvg99keM4GZ8L3VYw-Bvj04GFBHusEhD6Z1kf7EtKUw-WzRWbq2EBy6-ywztn9GnnTQR_v8VGfk7v27b6uP8_WXD59WN-s5CCXT3FSFskJW-dNdZQplgC-NqVnVmoIppriVHWjb6aqWXdlaDqpVIJU1y1YuayFm5PXRdx_8j9HG1AwYte17cNaPseEl40tWCcEy-uofdOfHkI80UVzWpVTZcUbYkZquE4Ptmn3AAcKhKVgzpdjkFJspxeaUYpa8PBmP7WDNX8E5tgxcH4E_0vPS__r9BhJorIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524954689</pqid></control><display><type>article</type><title>Uncertainty Quantification and Sensitivity Analysis of Partial Charges on Macroscopic Solvent Properties in Molecular Dynamics Simulations with a Machine Learning Model</title><source>American Chemical Society Journals</source><creator>Peerless, James S ; Kwansa, Albert L ; Hawkins, Branden S ; Smith, Ralph C ; Yingling, Yaroslava G</creator><creatorcontrib>Peerless, James S ; Kwansa, Albert L ; Hawkins, Branden S ; Smith, Ralph C ; Yingling, Yaroslava G</creatorcontrib><description>The molecular dynamics (MD) simulation technique is among the most broadly used computational methods to investigate atomistic phenomena in a variety of chemical and biological systems. One of the most common (and most uncertain) parametrization steps in MD simulations of soft materials is the assignment of partial charges to atoms. Here, we apply uncertainty quantification and sensitivity analysis calculations to assess the uncertainty associated with partial charge assignment in the context of MD simulations of an organic solvent. Our results indicate that the effect of partial charge variance on bulk properties, such as solubility parameters, diffusivity, dipole moment, and density, measured from MD simulations is significant; however, measured properties are observed to be less sensitive to partial charges of less accessible (or buried) atoms. Diffusivity, for example, exhibits a global sensitivity of up to 22 × 10–5 cm2/s per electron charge on some acetonitrile atoms. We then demonstrate that machine learning techniques, such as Gaussian process regression (GPR), can be effective and rapid tools for uncertainty quantification of MD simulations. We show that the formulation and application of an efficient GPR surrogate model for the prediction of responses effectively reduces the computational time of additional sample points from hours to milliseconds. This study provides a much-needed context for the effect that partial charge uncertainty has on MD-derived material properties to illustrate the benefit of considering partial charges as distributions rather than point-values. To aid in this treatment, this work then demonstrates methods for rapid characterization of resulting sensitivity in MD simulations.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.0c01204</identifier><identifier>PMID: 33729778</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetonitrile ; Bulk density ; Computational Chemistry ; Computing time ; Context ; Diffusion ; Diffusivity ; Dipole moments ; Gaussian process ; Machine learning ; Material properties ; Molecular dynamics ; Parameterization ; Sensitivity analysis ; Simulation ; Solubility parameters ; Solvents ; Uncertainty</subject><ispartof>Journal of chemical information and modeling, 2021-04, Vol.61 (4), p.1745-1761</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Apr 26, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-d716e347596f7d16da28dd907bd106062e4facefc794f5be2a6b6a46ed8b48933</citedby><cites>FETCH-LOGICAL-a364t-d716e347596f7d16da28dd907bd106062e4facefc794f5be2a6b6a46ed8b48933</cites><orcidid>0000-0002-8557-9992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.0c01204$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.0c01204$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33729778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peerless, James S</creatorcontrib><creatorcontrib>Kwansa, Albert L</creatorcontrib><creatorcontrib>Hawkins, Branden S</creatorcontrib><creatorcontrib>Smith, Ralph C</creatorcontrib><creatorcontrib>Yingling, Yaroslava G</creatorcontrib><title>Uncertainty Quantification and Sensitivity Analysis of Partial Charges on Macroscopic Solvent Properties in Molecular Dynamics Simulations with a Machine Learning Model</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>The molecular dynamics (MD) simulation technique is among the most broadly used computational methods to investigate atomistic phenomena in a variety of chemical and biological systems. One of the most common (and most uncertain) parametrization steps in MD simulations of soft materials is the assignment of partial charges to atoms. Here, we apply uncertainty quantification and sensitivity analysis calculations to assess the uncertainty associated with partial charge assignment in the context of MD simulations of an organic solvent. Our results indicate that the effect of partial charge variance on bulk properties, such as solubility parameters, diffusivity, dipole moment, and density, measured from MD simulations is significant; however, measured properties are observed to be less sensitive to partial charges of less accessible (or buried) atoms. Diffusivity, for example, exhibits a global sensitivity of up to 22 × 10–5 cm2/s per electron charge on some acetonitrile atoms. We then demonstrate that machine learning techniques, such as Gaussian process regression (GPR), can be effective and rapid tools for uncertainty quantification of MD simulations. We show that the formulation and application of an efficient GPR surrogate model for the prediction of responses effectively reduces the computational time of additional sample points from hours to milliseconds. This study provides a much-needed context for the effect that partial charge uncertainty has on MD-derived material properties to illustrate the benefit of considering partial charges as distributions rather than point-values. To aid in this treatment, this work then demonstrates methods for rapid characterization of resulting sensitivity in MD simulations.</description><subject>Acetonitrile</subject><subject>Bulk density</subject><subject>Computational Chemistry</subject><subject>Computing time</subject><subject>Context</subject><subject>Diffusion</subject><subject>Diffusivity</subject><subject>Dipole moments</subject><subject>Gaussian process</subject><subject>Machine learning</subject><subject>Material properties</subject><subject>Molecular dynamics</subject><subject>Parameterization</subject><subject>Sensitivity analysis</subject><subject>Simulation</subject><subject>Solubility parameters</subject><subject>Solvents</subject><subject>Uncertainty</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kU-P0zAQxS0EYncLd07IEhcO2-LYjtMcV-WvVMSishK3aGI726kSu9jOon4jPiYObTkgcZrR-PfeyPMIeVGwRcF48QZ0XOw0DgumWcGZfEQui1LW81qx74_PfVmrC3IV444xIWrFn5ILISpeV9Xykvy6c9qGBOjSgX4dwSXsUENC7yg4QzfWRUz4gPn5xkF_iBip7-gthITQ09UWwr3NI0c_gw4-ar9HTTe-f7Au0dvg99keM4GZ8L3VYw-Bvj04GFBHusEhD6Z1kf7EtKUw-WzRWbq2EBy6-ywztn9GnnTQR_v8VGfk7v27b6uP8_WXD59WN-s5CCXT3FSFskJW-dNdZQplgC-NqVnVmoIppriVHWjb6aqWXdlaDqpVIJU1y1YuayFm5PXRdx_8j9HG1AwYte17cNaPseEl40tWCcEy-uofdOfHkI80UVzWpVTZcUbYkZquE4Ptmn3AAcKhKVgzpdjkFJspxeaUYpa8PBmP7WDNX8E5tgxcH4E_0vPS__r9BhJorIg</recordid><startdate>20210426</startdate><enddate>20210426</enddate><creator>Peerless, James S</creator><creator>Kwansa, Albert L</creator><creator>Hawkins, Branden S</creator><creator>Smith, Ralph C</creator><creator>Yingling, Yaroslava G</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8557-9992</orcidid></search><sort><creationdate>20210426</creationdate><title>Uncertainty Quantification and Sensitivity Analysis of Partial Charges on Macroscopic Solvent Properties in Molecular Dynamics Simulations with a Machine Learning Model</title><author>Peerless, James S ; Kwansa, Albert L ; Hawkins, Branden S ; Smith, Ralph C ; Yingling, Yaroslava G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-d716e347596f7d16da28dd907bd106062e4facefc794f5be2a6b6a46ed8b48933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetonitrile</topic><topic>Bulk density</topic><topic>Computational Chemistry</topic><topic>Computing time</topic><topic>Context</topic><topic>Diffusion</topic><topic>Diffusivity</topic><topic>Dipole moments</topic><topic>Gaussian process</topic><topic>Machine learning</topic><topic>Material properties</topic><topic>Molecular dynamics</topic><topic>Parameterization</topic><topic>Sensitivity analysis</topic><topic>Simulation</topic><topic>Solubility parameters</topic><topic>Solvents</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peerless, James S</creatorcontrib><creatorcontrib>Kwansa, Albert L</creatorcontrib><creatorcontrib>Hawkins, Branden S</creatorcontrib><creatorcontrib>Smith, Ralph C</creatorcontrib><creatorcontrib>Yingling, Yaroslava G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peerless, James S</au><au>Kwansa, Albert L</au><au>Hawkins, Branden S</au><au>Smith, Ralph C</au><au>Yingling, Yaroslava G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty Quantification and Sensitivity Analysis of Partial Charges on Macroscopic Solvent Properties in Molecular Dynamics Simulations with a Machine Learning Model</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2021-04-26</date><risdate>2021</risdate><volume>61</volume><issue>4</issue><spage>1745</spage><epage>1761</epage><pages>1745-1761</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>The molecular dynamics (MD) simulation technique is among the most broadly used computational methods to investigate atomistic phenomena in a variety of chemical and biological systems. One of the most common (and most uncertain) parametrization steps in MD simulations of soft materials is the assignment of partial charges to atoms. Here, we apply uncertainty quantification and sensitivity analysis calculations to assess the uncertainty associated with partial charge assignment in the context of MD simulations of an organic solvent. Our results indicate that the effect of partial charge variance on bulk properties, such as solubility parameters, diffusivity, dipole moment, and density, measured from MD simulations is significant; however, measured properties are observed to be less sensitive to partial charges of less accessible (or buried) atoms. Diffusivity, for example, exhibits a global sensitivity of up to 22 × 10–5 cm2/s per electron charge on some acetonitrile atoms. We then demonstrate that machine learning techniques, such as Gaussian process regression (GPR), can be effective and rapid tools for uncertainty quantification of MD simulations. We show that the formulation and application of an efficient GPR surrogate model for the prediction of responses effectively reduces the computational time of additional sample points from hours to milliseconds. This study provides a much-needed context for the effect that partial charge uncertainty has on MD-derived material properties to illustrate the benefit of considering partial charges as distributions rather than point-values. To aid in this treatment, this work then demonstrates methods for rapid characterization of resulting sensitivity in MD simulations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33729778</pmid><doi>10.1021/acs.jcim.0c01204</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8557-9992</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2021-04, Vol.61 (4), p.1745-1761
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2502807330
source American Chemical Society Journals
subjects Acetonitrile
Bulk density
Computational Chemistry
Computing time
Context
Diffusion
Diffusivity
Dipole moments
Gaussian process
Machine learning
Material properties
Molecular dynamics
Parameterization
Sensitivity analysis
Simulation
Solubility parameters
Solvents
Uncertainty
title Uncertainty Quantification and Sensitivity Analysis of Partial Charges on Macroscopic Solvent Properties in Molecular Dynamics Simulations with a Machine Learning Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20Quantification%20and%20Sensitivity%20Analysis%20of%20Partial%20Charges%20on%20Macroscopic%20Solvent%20Properties%20in%20Molecular%20Dynamics%20Simulations%20with%20a%20Machine%20Learning%20Model&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Peerless,%20James%20S&rft.date=2021-04-26&rft.volume=61&rft.issue=4&rft.spage=1745&rft.epage=1761&rft.pages=1745-1761&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.0c01204&rft_dat=%3Cproquest_cross%3E2524954689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524954689&rft_id=info:pmid/33729778&rfr_iscdi=true