Implanting mechanics of PEG/DEX coated flexible neural probe: impacts of fabricating methods

Resorbable coatings are processed on flexible implants to facilitate penetrations. However, impacts of fabricating methods on implantation damage of coated probes are unclear. Herein, photosensitive polyimide (PSPI) based flexible neural implants are fabricated through clean-room technology. Polyeth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical microdevices 2021-03, Vol.23 (1), p.17-17, Article 17
Hauptverfasser: Zhang, Wenguang, Zhou, Xuhui, He, Yuxin, Xu, Liyue, Xie, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 17
container_title Biomedical microdevices
container_volume 23
creator Zhang, Wenguang
Zhou, Xuhui
He, Yuxin
Xu, Liyue
Xie, Jie
description Resorbable coatings are processed on flexible implants to facilitate penetrations. However, impacts of fabricating methods on implantation damage of coated probes are unclear. Herein, photosensitive polyimide (PSPI) based flexible neural implants are fabricated through clean-room technology. Polyethyleneglycol (PEG) - dexamethasone (DEX) coatings are processed through an improved micro moulding protocol in micro channels, fabricated by computer-numerical-controlled (CNC) micro milling, laser machining, and deep reactive ion etching (DRIE), respectively. An in vitro testing system is developed, using maximum insertion force F max and mean region-of-interest strain S mean to accurately evaluate effects of the three fabricating methods on implantation damage at different insertion speed. Rat cerebrum, agarose gel, and silicone rubber are used as brain phantoms for tests. Results show that lower insertion speed, and micro channels fabricated by CNC micro milling or DRIE can minimize implantation damage. The decrease of insertion speed from 2.0 mm/s to 0.5 mm/s reduces F max by 76.2% ~85.1% and S mean by 11.6% ~14.7%, respectively. Compared with laser machining, CNC micro milling and DRIE ensure dimensional accuracy of the PEG/DEX coating, reducing F max by 20.2% ~51.4% and S mean by 8.0% ~11.6%, respectively. Compared with biological rat cerebrum, F max reduces by 5.8% ~25.1% in agarose gel phantom and increases by 7.7% ~21.0% in silicone rubber phantom, respectively. This study improves processing methods of polymer coatings and reveals mechanical difference between current used abiotic brain phantoms and biological brain tissues. Implantation tests establish quantitative relationship among insertion speed, fabricating methods, and implantation damage.
doi_str_mv 10.1007/s10544-021-00552-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2502805732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502805732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-394ed08c82bf917a7ab516efb84e88a3d5611c2df9793620bb6ee56fb95abc4c3</originalsourceid><addsrcrecordid>eNp9kMlKBDEURYMoDq0_4EIK3LgpzVAZyp1oO4CgCwUXQkhSL21JDW1SBfr3xu5WwYWrBHLuzXsHoX2CjwnG8iQSzIsix5TkGHNOc76GtgmXNFdSkfV0Z0rmlEixhXZifMWYlEKITbTFmGQpJrfR8007b0w31N0sa8G9mK52Met9dj-9OrmYPmWuNwNUmW_gvbYNZB2MwTTZPPQWTrO6nRs3LALe2FA7s2oaXvoq7qINb5oIe6tzgh4vpw_n1_nt3dXN-dlt7pjkQ87KAiqsnKLWl0QaaSwnArxVBShlWMUFIY5WvpQlExRbKwC48LbkxrrCsQk6Wvamqd5GiINu6-igSYtBP0ZNOaYKc8loQg__oK_9GLo03YLCvCwJSRRdUi70MQbweh7q1oQPTbD-cq-X7nWSqBfuNU-hg1X1aFuofiLfshPAlkBMT90Mwu_f_9R-Ajocjlk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502059911</pqid></control><display><type>article</type><title>Implanting mechanics of PEG/DEX coated flexible neural probe: impacts of fabricating methods</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Wenguang ; Zhou, Xuhui ; He, Yuxin ; Xu, Liyue ; Xie, Jie</creator><creatorcontrib>Zhang, Wenguang ; Zhou, Xuhui ; He, Yuxin ; Xu, Liyue ; Xie, Jie</creatorcontrib><description>Resorbable coatings are processed on flexible implants to facilitate penetrations. However, impacts of fabricating methods on implantation damage of coated probes are unclear. Herein, photosensitive polyimide (PSPI) based flexible neural implants are fabricated through clean-room technology. Polyethyleneglycol (PEG) - dexamethasone (DEX) coatings are processed through an improved micro moulding protocol in micro channels, fabricated by computer-numerical-controlled (CNC) micro milling, laser machining, and deep reactive ion etching (DRIE), respectively. An in vitro testing system is developed, using maximum insertion force F max and mean region-of-interest strain S mean to accurately evaluate effects of the three fabricating methods on implantation damage at different insertion speed. Rat cerebrum, agarose gel, and silicone rubber are used as brain phantoms for tests. Results show that lower insertion speed, and micro channels fabricated by CNC micro milling or DRIE can minimize implantation damage. The decrease of insertion speed from 2.0 mm/s to 0.5 mm/s reduces F max by 76.2% ~85.1% and S mean by 11.6% ~14.7%, respectively. Compared with laser machining, CNC micro milling and DRIE ensure dimensional accuracy of the PEG/DEX coating, reducing F max by 20.2% ~51.4% and S mean by 8.0% ~11.6%, respectively. Compared with biological rat cerebrum, F max reduces by 5.8% ~25.1% in agarose gel phantom and increases by 7.7% ~21.0% in silicone rubber phantom, respectively. This study improves processing methods of polymer coatings and reveals mechanical difference between current used abiotic brain phantoms and biological brain tissues. Implantation tests establish quantitative relationship among insertion speed, fabricating methods, and implantation damage.</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-021-00552-5</identifier><identifier>PMID: 33730217</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Brain ; Cerebrum ; Channels ; Cleanrooms ; Coatings ; Dexamethasone ; Engineering ; Engineering Fluid Dynamics ; Etching ; Impact damage ; Implantation ; In vitro methods and tests ; Insertion ; Laser machining ; Milling (machining) ; Molding (process) ; Nanotechnology ; Neural prostheses ; Photosensitivity ; Polyethylene glycol ; Polymer coatings ; Polymers ; Reactive ion etching ; Rubber ; Silicone resins ; Silicone rubber ; Silicones ; Steroids</subject><ispartof>Biomedical microdevices, 2021-03, Vol.23 (1), p.17-17, Article 17</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-394ed08c82bf917a7ab516efb84e88a3d5611c2df9793620bb6ee56fb95abc4c3</citedby><cites>FETCH-LOGICAL-c375t-394ed08c82bf917a7ab516efb84e88a3d5611c2df9793620bb6ee56fb95abc4c3</cites><orcidid>0000-0002-2510-1479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10544-021-00552-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10544-021-00552-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33730217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Wenguang</creatorcontrib><creatorcontrib>Zhou, Xuhui</creatorcontrib><creatorcontrib>He, Yuxin</creatorcontrib><creatorcontrib>Xu, Liyue</creatorcontrib><creatorcontrib>Xie, Jie</creatorcontrib><title>Implanting mechanics of PEG/DEX coated flexible neural probe: impacts of fabricating methods</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><addtitle>Biomed Microdevices</addtitle><description>Resorbable coatings are processed on flexible implants to facilitate penetrations. However, impacts of fabricating methods on implantation damage of coated probes are unclear. Herein, photosensitive polyimide (PSPI) based flexible neural implants are fabricated through clean-room technology. Polyethyleneglycol (PEG) - dexamethasone (DEX) coatings are processed through an improved micro moulding protocol in micro channels, fabricated by computer-numerical-controlled (CNC) micro milling, laser machining, and deep reactive ion etching (DRIE), respectively. An in vitro testing system is developed, using maximum insertion force F max and mean region-of-interest strain S mean to accurately evaluate effects of the three fabricating methods on implantation damage at different insertion speed. Rat cerebrum, agarose gel, and silicone rubber are used as brain phantoms for tests. Results show that lower insertion speed, and micro channels fabricated by CNC micro milling or DRIE can minimize implantation damage. The decrease of insertion speed from 2.0 mm/s to 0.5 mm/s reduces F max by 76.2% ~85.1% and S mean by 11.6% ~14.7%, respectively. Compared with laser machining, CNC micro milling and DRIE ensure dimensional accuracy of the PEG/DEX coating, reducing F max by 20.2% ~51.4% and S mean by 8.0% ~11.6%, respectively. Compared with biological rat cerebrum, F max reduces by 5.8% ~25.1% in agarose gel phantom and increases by 7.7% ~21.0% in silicone rubber phantom, respectively. This study improves processing methods of polymer coatings and reveals mechanical difference between current used abiotic brain phantoms and biological brain tissues. Implantation tests establish quantitative relationship among insertion speed, fabricating methods, and implantation damage.</description><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Brain</subject><subject>Cerebrum</subject><subject>Channels</subject><subject>Cleanrooms</subject><subject>Coatings</subject><subject>Dexamethasone</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Etching</subject><subject>Impact damage</subject><subject>Implantation</subject><subject>In vitro methods and tests</subject><subject>Insertion</subject><subject>Laser machining</subject><subject>Milling (machining)</subject><subject>Molding (process)</subject><subject>Nanotechnology</subject><subject>Neural prostheses</subject><subject>Photosensitivity</subject><subject>Polyethylene glycol</subject><subject>Polymer coatings</subject><subject>Polymers</subject><subject>Reactive ion etching</subject><subject>Rubber</subject><subject>Silicone resins</subject><subject>Silicone rubber</subject><subject>Silicones</subject><subject>Steroids</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMlKBDEURYMoDq0_4EIK3LgpzVAZyp1oO4CgCwUXQkhSL21JDW1SBfr3xu5WwYWrBHLuzXsHoX2CjwnG8iQSzIsix5TkGHNOc76GtgmXNFdSkfV0Z0rmlEixhXZifMWYlEKITbTFmGQpJrfR8007b0w31N0sa8G9mK52Met9dj-9OrmYPmWuNwNUmW_gvbYNZB2MwTTZPPQWTrO6nRs3LALe2FA7s2oaXvoq7qINb5oIe6tzgh4vpw_n1_nt3dXN-dlt7pjkQ87KAiqsnKLWl0QaaSwnArxVBShlWMUFIY5WvpQlExRbKwC48LbkxrrCsQk6Wvamqd5GiINu6-igSYtBP0ZNOaYKc8loQg__oK_9GLo03YLCvCwJSRRdUi70MQbweh7q1oQPTbD-cq-X7nWSqBfuNU-hg1X1aFuofiLfshPAlkBMT90Mwu_f_9R-Ajocjlk</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhang, Wenguang</creator><creator>Zhou, Xuhui</creator><creator>He, Yuxin</creator><creator>Xu, Liyue</creator><creator>Xie, Jie</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2510-1479</orcidid></search><sort><creationdate>20210301</creationdate><title>Implanting mechanics of PEG/DEX coated flexible neural probe: impacts of fabricating methods</title><author>Zhang, Wenguang ; Zhou, Xuhui ; He, Yuxin ; Xu, Liyue ; Xie, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-394ed08c82bf917a7ab516efb84e88a3d5611c2df9793620bb6ee56fb95abc4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Brain</topic><topic>Cerebrum</topic><topic>Channels</topic><topic>Cleanrooms</topic><topic>Coatings</topic><topic>Dexamethasone</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Etching</topic><topic>Impact damage</topic><topic>Implantation</topic><topic>In vitro methods and tests</topic><topic>Insertion</topic><topic>Laser machining</topic><topic>Milling (machining)</topic><topic>Molding (process)</topic><topic>Nanotechnology</topic><topic>Neural prostheses</topic><topic>Photosensitivity</topic><topic>Polyethylene glycol</topic><topic>Polymer coatings</topic><topic>Polymers</topic><topic>Reactive ion etching</topic><topic>Rubber</topic><topic>Silicone resins</topic><topic>Silicone rubber</topic><topic>Silicones</topic><topic>Steroids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wenguang</creatorcontrib><creatorcontrib>Zhou, Xuhui</creatorcontrib><creatorcontrib>He, Yuxin</creatorcontrib><creatorcontrib>Xu, Liyue</creatorcontrib><creatorcontrib>Xie, Jie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wenguang</au><au>Zhou, Xuhui</au><au>He, Yuxin</au><au>Xu, Liyue</au><au>Xie, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implanting mechanics of PEG/DEX coated flexible neural probe: impacts of fabricating methods</atitle><jtitle>Biomedical microdevices</jtitle><stitle>Biomed Microdevices</stitle><addtitle>Biomed Microdevices</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>23</volume><issue>1</issue><spage>17</spage><epage>17</epage><pages>17-17</pages><artnum>17</artnum><issn>1387-2176</issn><eissn>1572-8781</eissn><abstract>Resorbable coatings are processed on flexible implants to facilitate penetrations. However, impacts of fabricating methods on implantation damage of coated probes are unclear. Herein, photosensitive polyimide (PSPI) based flexible neural implants are fabricated through clean-room technology. Polyethyleneglycol (PEG) - dexamethasone (DEX) coatings are processed through an improved micro moulding protocol in micro channels, fabricated by computer-numerical-controlled (CNC) micro milling, laser machining, and deep reactive ion etching (DRIE), respectively. An in vitro testing system is developed, using maximum insertion force F max and mean region-of-interest strain S mean to accurately evaluate effects of the three fabricating methods on implantation damage at different insertion speed. Rat cerebrum, agarose gel, and silicone rubber are used as brain phantoms for tests. Results show that lower insertion speed, and micro channels fabricated by CNC micro milling or DRIE can minimize implantation damage. The decrease of insertion speed from 2.0 mm/s to 0.5 mm/s reduces F max by 76.2% ~85.1% and S mean by 11.6% ~14.7%, respectively. Compared with laser machining, CNC micro milling and DRIE ensure dimensional accuracy of the PEG/DEX coating, reducing F max by 20.2% ~51.4% and S mean by 8.0% ~11.6%, respectively. Compared with biological rat cerebrum, F max reduces by 5.8% ~25.1% in agarose gel phantom and increases by 7.7% ~21.0% in silicone rubber phantom, respectively. This study improves processing methods of polymer coatings and reveals mechanical difference between current used abiotic brain phantoms and biological brain tissues. Implantation tests establish quantitative relationship among insertion speed, fabricating methods, and implantation damage.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33730217</pmid><doi>10.1007/s10544-021-00552-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2510-1479</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1387-2176
ispartof Biomedical microdevices, 2021-03, Vol.23 (1), p.17-17, Article 17
issn 1387-2176
1572-8781
language eng
recordid cdi_proquest_miscellaneous_2502805732
source Springer Nature - Complete Springer Journals
subjects Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Brain
Cerebrum
Channels
Cleanrooms
Coatings
Dexamethasone
Engineering
Engineering Fluid Dynamics
Etching
Impact damage
Implantation
In vitro methods and tests
Insertion
Laser machining
Milling (machining)
Molding (process)
Nanotechnology
Neural prostheses
Photosensitivity
Polyethylene glycol
Polymer coatings
Polymers
Reactive ion etching
Rubber
Silicone resins
Silicone rubber
Silicones
Steroids
title Implanting mechanics of PEG/DEX coated flexible neural probe: impacts of fabricating methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implanting%20mechanics%20of%20PEG/DEX%20coated%20flexible%20neural%20probe:%20impacts%20of%20fabricating%20methods&rft.jtitle=Biomedical%20microdevices&rft.au=Zhang,%20Wenguang&rft.date=2021-03-01&rft.volume=23&rft.issue=1&rft.spage=17&rft.epage=17&rft.pages=17-17&rft.artnum=17&rft.issn=1387-2176&rft.eissn=1572-8781&rft_id=info:doi/10.1007/s10544-021-00552-5&rft_dat=%3Cproquest_cross%3E2502805732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502059911&rft_id=info:pmid/33730217&rfr_iscdi=true