Implanting mechanics of PEG/DEX coated flexible neural probe: impacts of fabricating methods
Resorbable coatings are processed on flexible implants to facilitate penetrations. However, impacts of fabricating methods on implantation damage of coated probes are unclear. Herein, photosensitive polyimide (PSPI) based flexible neural implants are fabricated through clean-room technology. Polyeth...
Gespeichert in:
Veröffentlicht in: | Biomedical microdevices 2021-03, Vol.23 (1), p.17-17, Article 17 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | Biomedical microdevices |
container_volume | 23 |
creator | Zhang, Wenguang Zhou, Xuhui He, Yuxin Xu, Liyue Xie, Jie |
description | Resorbable coatings are processed on flexible implants to facilitate penetrations. However, impacts of fabricating methods on implantation damage of coated probes are unclear. Herein, photosensitive polyimide (PSPI) based flexible neural implants are fabricated through clean-room technology. Polyethyleneglycol (PEG) - dexamethasone (DEX) coatings are processed through an improved micro moulding protocol in micro channels, fabricated by computer-numerical-controlled (CNC) micro milling, laser machining, and deep reactive ion etching (DRIE), respectively. An in vitro testing system is developed, using maximum insertion force
F
max
and mean region-of-interest strain
S
mean
to accurately evaluate effects of the three fabricating methods on implantation damage at different insertion speed. Rat cerebrum, agarose gel, and silicone rubber are used as brain phantoms for tests. Results show that lower insertion speed, and micro channels fabricated by CNC micro milling or DRIE can minimize implantation damage. The decrease of insertion speed from 2.0 mm/s to 0.5 mm/s reduces
F
max
by 76.2% ~85.1% and
S
mean
by 11.6% ~14.7%, respectively. Compared with laser machining, CNC micro milling and DRIE ensure dimensional accuracy of the PEG/DEX coating, reducing
F
max
by 20.2% ~51.4% and
S
mean
by 8.0% ~11.6%, respectively. Compared with biological rat cerebrum,
F
max
reduces by 5.8% ~25.1% in agarose gel phantom and increases by 7.7% ~21.0% in silicone rubber phantom, respectively. This study improves processing methods of polymer coatings and reveals mechanical difference between current used abiotic brain phantoms and biological brain tissues. Implantation tests establish quantitative relationship among insertion speed, fabricating methods, and implantation damage. |
doi_str_mv | 10.1007/s10544-021-00552-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2502805732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502805732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-394ed08c82bf917a7ab516efb84e88a3d5611c2df9793620bb6ee56fb95abc4c3</originalsourceid><addsrcrecordid>eNp9kMlKBDEURYMoDq0_4EIK3LgpzVAZyp1oO4CgCwUXQkhSL21JDW1SBfr3xu5WwYWrBHLuzXsHoX2CjwnG8iQSzIsix5TkGHNOc76GtgmXNFdSkfV0Z0rmlEixhXZifMWYlEKITbTFmGQpJrfR8007b0w31N0sa8G9mK52Met9dj-9OrmYPmWuNwNUmW_gvbYNZB2MwTTZPPQWTrO6nRs3LALe2FA7s2oaXvoq7qINb5oIe6tzgh4vpw_n1_nt3dXN-dlt7pjkQ87KAiqsnKLWl0QaaSwnArxVBShlWMUFIY5WvpQlExRbKwC48LbkxrrCsQk6Wvamqd5GiINu6-igSYtBP0ZNOaYKc8loQg__oK_9GLo03YLCvCwJSRRdUi70MQbweh7q1oQPTbD-cq-X7nWSqBfuNU-hg1X1aFuofiLfshPAlkBMT90Mwu_f_9R-Ajocjlk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502059911</pqid></control><display><type>article</type><title>Implanting mechanics of PEG/DEX coated flexible neural probe: impacts of fabricating methods</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Wenguang ; Zhou, Xuhui ; He, Yuxin ; Xu, Liyue ; Xie, Jie</creator><creatorcontrib>Zhang, Wenguang ; Zhou, Xuhui ; He, Yuxin ; Xu, Liyue ; Xie, Jie</creatorcontrib><description>Resorbable coatings are processed on flexible implants to facilitate penetrations. However, impacts of fabricating methods on implantation damage of coated probes are unclear. Herein, photosensitive polyimide (PSPI) based flexible neural implants are fabricated through clean-room technology. Polyethyleneglycol (PEG) - dexamethasone (DEX) coatings are processed through an improved micro moulding protocol in micro channels, fabricated by computer-numerical-controlled (CNC) micro milling, laser machining, and deep reactive ion etching (DRIE), respectively. An in vitro testing system is developed, using maximum insertion force
F
max
and mean region-of-interest strain
S
mean
to accurately evaluate effects of the three fabricating methods on implantation damage at different insertion speed. Rat cerebrum, agarose gel, and silicone rubber are used as brain phantoms for tests. Results show that lower insertion speed, and micro channels fabricated by CNC micro milling or DRIE can minimize implantation damage. The decrease of insertion speed from 2.0 mm/s to 0.5 mm/s reduces
F
max
by 76.2% ~85.1% and
S
mean
by 11.6% ~14.7%, respectively. Compared with laser machining, CNC micro milling and DRIE ensure dimensional accuracy of the PEG/DEX coating, reducing
F
max
by 20.2% ~51.4% and
S
mean
by 8.0% ~11.6%, respectively. Compared with biological rat cerebrum,
F
max
reduces by 5.8% ~25.1% in agarose gel phantom and increases by 7.7% ~21.0% in silicone rubber phantom, respectively. This study improves processing methods of polymer coatings and reveals mechanical difference between current used abiotic brain phantoms and biological brain tissues. Implantation tests establish quantitative relationship among insertion speed, fabricating methods, and implantation damage.</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-021-00552-5</identifier><identifier>PMID: 33730217</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Brain ; Cerebrum ; Channels ; Cleanrooms ; Coatings ; Dexamethasone ; Engineering ; Engineering Fluid Dynamics ; Etching ; Impact damage ; Implantation ; In vitro methods and tests ; Insertion ; Laser machining ; Milling (machining) ; Molding (process) ; Nanotechnology ; Neural prostheses ; Photosensitivity ; Polyethylene glycol ; Polymer coatings ; Polymers ; Reactive ion etching ; Rubber ; Silicone resins ; Silicone rubber ; Silicones ; Steroids</subject><ispartof>Biomedical microdevices, 2021-03, Vol.23 (1), p.17-17, Article 17</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-394ed08c82bf917a7ab516efb84e88a3d5611c2df9793620bb6ee56fb95abc4c3</citedby><cites>FETCH-LOGICAL-c375t-394ed08c82bf917a7ab516efb84e88a3d5611c2df9793620bb6ee56fb95abc4c3</cites><orcidid>0000-0002-2510-1479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10544-021-00552-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10544-021-00552-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33730217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Wenguang</creatorcontrib><creatorcontrib>Zhou, Xuhui</creatorcontrib><creatorcontrib>He, Yuxin</creatorcontrib><creatorcontrib>Xu, Liyue</creatorcontrib><creatorcontrib>Xie, Jie</creatorcontrib><title>Implanting mechanics of PEG/DEX coated flexible neural probe: impacts of fabricating methods</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><addtitle>Biomed Microdevices</addtitle><description>Resorbable coatings are processed on flexible implants to facilitate penetrations. However, impacts of fabricating methods on implantation damage of coated probes are unclear. Herein, photosensitive polyimide (PSPI) based flexible neural implants are fabricated through clean-room technology. Polyethyleneglycol (PEG) - dexamethasone (DEX) coatings are processed through an improved micro moulding protocol in micro channels, fabricated by computer-numerical-controlled (CNC) micro milling, laser machining, and deep reactive ion etching (DRIE), respectively. An in vitro testing system is developed, using maximum insertion force
F
max
and mean region-of-interest strain
S
mean
to accurately evaluate effects of the three fabricating methods on implantation damage at different insertion speed. Rat cerebrum, agarose gel, and silicone rubber are used as brain phantoms for tests. Results show that lower insertion speed, and micro channels fabricated by CNC micro milling or DRIE can minimize implantation damage. The decrease of insertion speed from 2.0 mm/s to 0.5 mm/s reduces
F
max
by 76.2% ~85.1% and
S
mean
by 11.6% ~14.7%, respectively. Compared with laser machining, CNC micro milling and DRIE ensure dimensional accuracy of the PEG/DEX coating, reducing
F
max
by 20.2% ~51.4% and
S
mean
by 8.0% ~11.6%, respectively. Compared with biological rat cerebrum,
F
max
reduces by 5.8% ~25.1% in agarose gel phantom and increases by 7.7% ~21.0% in silicone rubber phantom, respectively. This study improves processing methods of polymer coatings and reveals mechanical difference between current used abiotic brain phantoms and biological brain tissues. Implantation tests establish quantitative relationship among insertion speed, fabricating methods, and implantation damage.</description><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Brain</subject><subject>Cerebrum</subject><subject>Channels</subject><subject>Cleanrooms</subject><subject>Coatings</subject><subject>Dexamethasone</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Etching</subject><subject>Impact damage</subject><subject>Implantation</subject><subject>In vitro methods and tests</subject><subject>Insertion</subject><subject>Laser machining</subject><subject>Milling (machining)</subject><subject>Molding (process)</subject><subject>Nanotechnology</subject><subject>Neural prostheses</subject><subject>Photosensitivity</subject><subject>Polyethylene glycol</subject><subject>Polymer coatings</subject><subject>Polymers</subject><subject>Reactive ion etching</subject><subject>Rubber</subject><subject>Silicone resins</subject><subject>Silicone rubber</subject><subject>Silicones</subject><subject>Steroids</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMlKBDEURYMoDq0_4EIK3LgpzVAZyp1oO4CgCwUXQkhSL21JDW1SBfr3xu5WwYWrBHLuzXsHoX2CjwnG8iQSzIsix5TkGHNOc76GtgmXNFdSkfV0Z0rmlEixhXZifMWYlEKITbTFmGQpJrfR8007b0w31N0sa8G9mK52Met9dj-9OrmYPmWuNwNUmW_gvbYNZB2MwTTZPPQWTrO6nRs3LALe2FA7s2oaXvoq7qINb5oIe6tzgh4vpw_n1_nt3dXN-dlt7pjkQ87KAiqsnKLWl0QaaSwnArxVBShlWMUFIY5WvpQlExRbKwC48LbkxrrCsQk6Wvamqd5GiINu6-igSYtBP0ZNOaYKc8loQg__oK_9GLo03YLCvCwJSRRdUi70MQbweh7q1oQPTbD-cq-X7nWSqBfuNU-hg1X1aFuofiLfshPAlkBMT90Mwu_f_9R-Ajocjlk</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhang, Wenguang</creator><creator>Zhou, Xuhui</creator><creator>He, Yuxin</creator><creator>Xu, Liyue</creator><creator>Xie, Jie</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2510-1479</orcidid></search><sort><creationdate>20210301</creationdate><title>Implanting mechanics of PEG/DEX coated flexible neural probe: impacts of fabricating methods</title><author>Zhang, Wenguang ; Zhou, Xuhui ; He, Yuxin ; Xu, Liyue ; Xie, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-394ed08c82bf917a7ab516efb84e88a3d5611c2df9793620bb6ee56fb95abc4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Brain</topic><topic>Cerebrum</topic><topic>Channels</topic><topic>Cleanrooms</topic><topic>Coatings</topic><topic>Dexamethasone</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Etching</topic><topic>Impact damage</topic><topic>Implantation</topic><topic>In vitro methods and tests</topic><topic>Insertion</topic><topic>Laser machining</topic><topic>Milling (machining)</topic><topic>Molding (process)</topic><topic>Nanotechnology</topic><topic>Neural prostheses</topic><topic>Photosensitivity</topic><topic>Polyethylene glycol</topic><topic>Polymer coatings</topic><topic>Polymers</topic><topic>Reactive ion etching</topic><topic>Rubber</topic><topic>Silicone resins</topic><topic>Silicone rubber</topic><topic>Silicones</topic><topic>Steroids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wenguang</creatorcontrib><creatorcontrib>Zhou, Xuhui</creatorcontrib><creatorcontrib>He, Yuxin</creatorcontrib><creatorcontrib>Xu, Liyue</creatorcontrib><creatorcontrib>Xie, Jie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wenguang</au><au>Zhou, Xuhui</au><au>He, Yuxin</au><au>Xu, Liyue</au><au>Xie, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implanting mechanics of PEG/DEX coated flexible neural probe: impacts of fabricating methods</atitle><jtitle>Biomedical microdevices</jtitle><stitle>Biomed Microdevices</stitle><addtitle>Biomed Microdevices</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>23</volume><issue>1</issue><spage>17</spage><epage>17</epage><pages>17-17</pages><artnum>17</artnum><issn>1387-2176</issn><eissn>1572-8781</eissn><abstract>Resorbable coatings are processed on flexible implants to facilitate penetrations. However, impacts of fabricating methods on implantation damage of coated probes are unclear. Herein, photosensitive polyimide (PSPI) based flexible neural implants are fabricated through clean-room technology. Polyethyleneglycol (PEG) - dexamethasone (DEX) coatings are processed through an improved micro moulding protocol in micro channels, fabricated by computer-numerical-controlled (CNC) micro milling, laser machining, and deep reactive ion etching (DRIE), respectively. An in vitro testing system is developed, using maximum insertion force
F
max
and mean region-of-interest strain
S
mean
to accurately evaluate effects of the three fabricating methods on implantation damage at different insertion speed. Rat cerebrum, agarose gel, and silicone rubber are used as brain phantoms for tests. Results show that lower insertion speed, and micro channels fabricated by CNC micro milling or DRIE can minimize implantation damage. The decrease of insertion speed from 2.0 mm/s to 0.5 mm/s reduces
F
max
by 76.2% ~85.1% and
S
mean
by 11.6% ~14.7%, respectively. Compared with laser machining, CNC micro milling and DRIE ensure dimensional accuracy of the PEG/DEX coating, reducing
F
max
by 20.2% ~51.4% and
S
mean
by 8.0% ~11.6%, respectively. Compared with biological rat cerebrum,
F
max
reduces by 5.8% ~25.1% in agarose gel phantom and increases by 7.7% ~21.0% in silicone rubber phantom, respectively. This study improves processing methods of polymer coatings and reveals mechanical difference between current used abiotic brain phantoms and biological brain tissues. Implantation tests establish quantitative relationship among insertion speed, fabricating methods, and implantation damage.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33730217</pmid><doi>10.1007/s10544-021-00552-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2510-1479</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-2176 |
ispartof | Biomedical microdevices, 2021-03, Vol.23 (1), p.17-17, Article 17 |
issn | 1387-2176 1572-8781 |
language | eng |
recordid | cdi_proquest_miscellaneous_2502805732 |
source | Springer Nature - Complete Springer Journals |
subjects | Biological and Medical Physics Biomedical Engineering and Bioengineering Biophysics Brain Cerebrum Channels Cleanrooms Coatings Dexamethasone Engineering Engineering Fluid Dynamics Etching Impact damage Implantation In vitro methods and tests Insertion Laser machining Milling (machining) Molding (process) Nanotechnology Neural prostheses Photosensitivity Polyethylene glycol Polymer coatings Polymers Reactive ion etching Rubber Silicone resins Silicone rubber Silicones Steroids |
title | Implanting mechanics of PEG/DEX coated flexible neural probe: impacts of fabricating methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implanting%20mechanics%20of%20PEG/DEX%20coated%20flexible%20neural%20probe:%20impacts%20of%20fabricating%20methods&rft.jtitle=Biomedical%20microdevices&rft.au=Zhang,%20Wenguang&rft.date=2021-03-01&rft.volume=23&rft.issue=1&rft.spage=17&rft.epage=17&rft.pages=17-17&rft.artnum=17&rft.issn=1387-2176&rft.eissn=1572-8781&rft_id=info:doi/10.1007/s10544-021-00552-5&rft_dat=%3Cproquest_cross%3E2502805732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502059911&rft_id=info:pmid/33730217&rfr_iscdi=true |