Lateral ventral tegmental area GABAergic and glutamatergic modulation of conditioned learning

The firing activity of dorso-medial-striatal-cholinergic interneurons (dmCINs) is a neural correlate of classical conditioning. Tonically active, they pause in response to salient stimuli, mediating acquisition of predictive cues/outcome associations. Cortical and thalamic inputs are typical of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) 2021-03, Vol.34 (11), p.108867-108867, Article 108867
Hauptverfasser: Rizzi, Giorgio, Li, Zhuoliang, Hogrefe, Norbert, Tan, Kelly R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108867
container_issue 11
container_start_page 108867
container_title Cell reports (Cambridge)
container_volume 34
creator Rizzi, Giorgio
Li, Zhuoliang
Hogrefe, Norbert
Tan, Kelly R.
description The firing activity of dorso-medial-striatal-cholinergic interneurons (dmCINs) is a neural correlate of classical conditioning. Tonically active, they pause in response to salient stimuli, mediating acquisition of predictive cues/outcome associations. Cortical and thalamic inputs are typical of the rather limited knowledge about underlying circuitry contributing to this function. Here, we dissect the midbrain GABA and glutamate-to-dmCIN pathways and evaluate how they influence conditioned behavior. We report that midbrain neurons discriminate auditory cues and encode the association of a predictive stimulus with a footshock. Furthermore, GABA and glutamate cells form selective monosynaptic contacts onto dmCINs and di-synaptic ones via the parafascicular thalamus. Pathway-specific inhibition of each sub-circuit produces differential impairments of fear-conditioned learning. Finally, Vglut2-expressing cells discriminate between CSs although Vgat-positive neurons associate the predictive cue with the outcome. Overall, these data suggest that each component of the network carries information pertinent to sub-domains of the behavioral strategy. [Display omitted] •Lateral VTA neurons provide monosynaptic inputs onto striatal cholinergic interneurons•These VTA neurons provide preferential inputs via parafascicular thalamus•Each direct and indirect pathway differentially contributes to fear learning•GABA cells associate CS+/FS; glutamate cells discriminate CS−/CS+ Rizzi et al. show that lateral-VTA glutamate and GABA cells provide direct and indirect inputs onto striatal cholinergic interneurons. The activity of these lateral-VTA cell types is responsible for specific aspects of fear learning, leading each related pathway to contribute differentially to the behavioral outcome.
doi_str_mv 10.1016/j.celrep.2021.108867
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2502805605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124721001819</els_id><sourcerecordid>2502805605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-9aaf5d27347545dbc13361d57146712467b6ec3827b59d2cfe756f9bcc9d8523</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMobsx9A5E--tKZpE3Svghz6BQGvuxVQprcloz-mUk78Nub0ik-mZd7cznnXs4PoVuCVwQT_nBYaagdHFcUUxJGWcbFBZpTSkhMaCou__QztPT-gMPjmJA8vUazJBEJZjybo4-d6sGpOjpB24-1h6oJbeiUAxVt109rcJXVkWpNVNVDr5rRMU6azgy16m3XRl0Z6a41dvyAiWpQrrVtdYOuSlV7WJ7rAu1fnveb13j3vn3brHexTnHWx7lSJTNUJKlgKTOFJknCiWGCpFyECFwUHHSSUVGw3FBdgmC8zAutc5MxmizQ_bT26LrPAXwvG-sDoFq10A1eUoZpFvJiFqTpJNWu895BKY_ONsp9SYLliFYe5IRWjmjlhDbY7s4XhqIB82v6ARkEj5MAQsyTBSe9ttBqMNaB7qXp7P8XvgGdJovT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502805605</pqid></control><display><type>article</type><title>Lateral ventral tegmental area GABAergic and glutamatergic modulation of conditioned learning</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Cell Press Free Archives</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Rizzi, Giorgio ; Li, Zhuoliang ; Hogrefe, Norbert ; Tan, Kelly R.</creator><creatorcontrib>Rizzi, Giorgio ; Li, Zhuoliang ; Hogrefe, Norbert ; Tan, Kelly R.</creatorcontrib><description>The firing activity of dorso-medial-striatal-cholinergic interneurons (dmCINs) is a neural correlate of classical conditioning. Tonically active, they pause in response to salient stimuli, mediating acquisition of predictive cues/outcome associations. Cortical and thalamic inputs are typical of the rather limited knowledge about underlying circuitry contributing to this function. Here, we dissect the midbrain GABA and glutamate-to-dmCIN pathways and evaluate how they influence conditioned behavior. We report that midbrain neurons discriminate auditory cues and encode the association of a predictive stimulus with a footshock. Furthermore, GABA and glutamate cells form selective monosynaptic contacts onto dmCINs and di-synaptic ones via the parafascicular thalamus. Pathway-specific inhibition of each sub-circuit produces differential impairments of fear-conditioned learning. Finally, Vglut2-expressing cells discriminate between CSs although Vgat-positive neurons associate the predictive cue with the outcome. Overall, these data suggest that each component of the network carries information pertinent to sub-domains of the behavioral strategy. [Display omitted] •Lateral VTA neurons provide monosynaptic inputs onto striatal cholinergic interneurons•These VTA neurons provide preferential inputs via parafascicular thalamus•Each direct and indirect pathway differentially contributes to fear learning•GABA cells associate CS+/FS; glutamate cells discriminate CS−/CS+ Rizzi et al. show that lateral-VTA glutamate and GABA cells provide direct and indirect inputs onto striatal cholinergic interneurons. The activity of these lateral-VTA cell types is responsible for specific aspects of fear learning, leading each related pathway to contribute differentially to the behavioral outcome.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2021.108867</identifier><identifier>PMID: 33730568</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acoustic Stimulation ; Animals ; brain clearing ; Choline - metabolism ; cholinergic interneurons ; Conditioning, Classical ; Cues ; Discrimination Learning ; Electroshock ; Fear ; fear conditioning ; Female ; GABA neurons ; GABAergic Neurons - physiology ; glutamate neurons ; Glutamates - metabolism ; Interneurons - physiology ; Learning ; Male ; Mice ; Mice, Inbred C57BL ; midbrain ; midbrain in vivo calcium imaging ; optogenetic inhibition ; Synapses - physiology ; Thalamus - physiology ; Ventral Tegmental Area - physiology ; Vesicular Glutamate Transport Protein 2 - metabolism</subject><ispartof>Cell reports (Cambridge), 2021-03, Vol.34 (11), p.108867-108867, Article 108867</ispartof><rights>2021 The Author(s)</rights><rights>Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-9aaf5d27347545dbc13361d57146712467b6ec3827b59d2cfe756f9bcc9d8523</citedby><cites>FETCH-LOGICAL-c408t-9aaf5d27347545dbc13361d57146712467b6ec3827b59d2cfe756f9bcc9d8523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33730568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rizzi, Giorgio</creatorcontrib><creatorcontrib>Li, Zhuoliang</creatorcontrib><creatorcontrib>Hogrefe, Norbert</creatorcontrib><creatorcontrib>Tan, Kelly R.</creatorcontrib><title>Lateral ventral tegmental area GABAergic and glutamatergic modulation of conditioned learning</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>The firing activity of dorso-medial-striatal-cholinergic interneurons (dmCINs) is a neural correlate of classical conditioning. Tonically active, they pause in response to salient stimuli, mediating acquisition of predictive cues/outcome associations. Cortical and thalamic inputs are typical of the rather limited knowledge about underlying circuitry contributing to this function. Here, we dissect the midbrain GABA and glutamate-to-dmCIN pathways and evaluate how they influence conditioned behavior. We report that midbrain neurons discriminate auditory cues and encode the association of a predictive stimulus with a footshock. Furthermore, GABA and glutamate cells form selective monosynaptic contacts onto dmCINs and di-synaptic ones via the parafascicular thalamus. Pathway-specific inhibition of each sub-circuit produces differential impairments of fear-conditioned learning. Finally, Vglut2-expressing cells discriminate between CSs although Vgat-positive neurons associate the predictive cue with the outcome. Overall, these data suggest that each component of the network carries information pertinent to sub-domains of the behavioral strategy. [Display omitted] •Lateral VTA neurons provide monosynaptic inputs onto striatal cholinergic interneurons•These VTA neurons provide preferential inputs via parafascicular thalamus•Each direct and indirect pathway differentially contributes to fear learning•GABA cells associate CS+/FS; glutamate cells discriminate CS−/CS+ Rizzi et al. show that lateral-VTA glutamate and GABA cells provide direct and indirect inputs onto striatal cholinergic interneurons. The activity of these lateral-VTA cell types is responsible for specific aspects of fear learning, leading each related pathway to contribute differentially to the behavioral outcome.</description><subject>Acoustic Stimulation</subject><subject>Animals</subject><subject>brain clearing</subject><subject>Choline - metabolism</subject><subject>cholinergic interneurons</subject><subject>Conditioning, Classical</subject><subject>Cues</subject><subject>Discrimination Learning</subject><subject>Electroshock</subject><subject>Fear</subject><subject>fear conditioning</subject><subject>Female</subject><subject>GABA neurons</subject><subject>GABAergic Neurons - physiology</subject><subject>glutamate neurons</subject><subject>Glutamates - metabolism</subject><subject>Interneurons - physiology</subject><subject>Learning</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>midbrain</subject><subject>midbrain in vivo calcium imaging</subject><subject>optogenetic inhibition</subject><subject>Synapses - physiology</subject><subject>Thalamus - physiology</subject><subject>Ventral Tegmental Area - physiology</subject><subject>Vesicular Glutamate Transport Protein 2 - metabolism</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF9LwzAUxYMobsx9A5E--tKZpE3Svghz6BQGvuxVQprcloz-mUk78Nub0ik-mZd7cznnXs4PoVuCVwQT_nBYaagdHFcUUxJGWcbFBZpTSkhMaCou__QztPT-gMPjmJA8vUazJBEJZjybo4-d6sGpOjpB24-1h6oJbeiUAxVt109rcJXVkWpNVNVDr5rRMU6azgy16m3XRl0Z6a41dvyAiWpQrrVtdYOuSlV7WJ7rAu1fnveb13j3vn3brHexTnHWx7lSJTNUJKlgKTOFJknCiWGCpFyECFwUHHSSUVGw3FBdgmC8zAutc5MxmizQ_bT26LrPAXwvG-sDoFq10A1eUoZpFvJiFqTpJNWu895BKY_ONsp9SYLliFYe5IRWjmjlhDbY7s4XhqIB82v6ARkEj5MAQsyTBSe9ttBqMNaB7qXp7P8XvgGdJovT</recordid><startdate>20210316</startdate><enddate>20210316</enddate><creator>Rizzi, Giorgio</creator><creator>Li, Zhuoliang</creator><creator>Hogrefe, Norbert</creator><creator>Tan, Kelly R.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210316</creationdate><title>Lateral ventral tegmental area GABAergic and glutamatergic modulation of conditioned learning</title><author>Rizzi, Giorgio ; Li, Zhuoliang ; Hogrefe, Norbert ; Tan, Kelly R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-9aaf5d27347545dbc13361d57146712467b6ec3827b59d2cfe756f9bcc9d8523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic Stimulation</topic><topic>Animals</topic><topic>brain clearing</topic><topic>Choline - metabolism</topic><topic>cholinergic interneurons</topic><topic>Conditioning, Classical</topic><topic>Cues</topic><topic>Discrimination Learning</topic><topic>Electroshock</topic><topic>Fear</topic><topic>fear conditioning</topic><topic>Female</topic><topic>GABA neurons</topic><topic>GABAergic Neurons - physiology</topic><topic>glutamate neurons</topic><topic>Glutamates - metabolism</topic><topic>Interneurons - physiology</topic><topic>Learning</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>midbrain</topic><topic>midbrain in vivo calcium imaging</topic><topic>optogenetic inhibition</topic><topic>Synapses - physiology</topic><topic>Thalamus - physiology</topic><topic>Ventral Tegmental Area - physiology</topic><topic>Vesicular Glutamate Transport Protein 2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rizzi, Giorgio</creatorcontrib><creatorcontrib>Li, Zhuoliang</creatorcontrib><creatorcontrib>Hogrefe, Norbert</creatorcontrib><creatorcontrib>Tan, Kelly R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rizzi, Giorgio</au><au>Li, Zhuoliang</au><au>Hogrefe, Norbert</au><au>Tan, Kelly R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lateral ventral tegmental area GABAergic and glutamatergic modulation of conditioned learning</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2021-03-16</date><risdate>2021</risdate><volume>34</volume><issue>11</issue><spage>108867</spage><epage>108867</epage><pages>108867-108867</pages><artnum>108867</artnum><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>The firing activity of dorso-medial-striatal-cholinergic interneurons (dmCINs) is a neural correlate of classical conditioning. Tonically active, they pause in response to salient stimuli, mediating acquisition of predictive cues/outcome associations. Cortical and thalamic inputs are typical of the rather limited knowledge about underlying circuitry contributing to this function. Here, we dissect the midbrain GABA and glutamate-to-dmCIN pathways and evaluate how they influence conditioned behavior. We report that midbrain neurons discriminate auditory cues and encode the association of a predictive stimulus with a footshock. Furthermore, GABA and glutamate cells form selective monosynaptic contacts onto dmCINs and di-synaptic ones via the parafascicular thalamus. Pathway-specific inhibition of each sub-circuit produces differential impairments of fear-conditioned learning. Finally, Vglut2-expressing cells discriminate between CSs although Vgat-positive neurons associate the predictive cue with the outcome. Overall, these data suggest that each component of the network carries information pertinent to sub-domains of the behavioral strategy. [Display omitted] •Lateral VTA neurons provide monosynaptic inputs onto striatal cholinergic interneurons•These VTA neurons provide preferential inputs via parafascicular thalamus•Each direct and indirect pathway differentially contributes to fear learning•GABA cells associate CS+/FS; glutamate cells discriminate CS−/CS+ Rizzi et al. show that lateral-VTA glutamate and GABA cells provide direct and indirect inputs onto striatal cholinergic interneurons. The activity of these lateral-VTA cell types is responsible for specific aspects of fear learning, leading each related pathway to contribute differentially to the behavioral outcome.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33730568</pmid><doi>10.1016/j.celrep.2021.108867</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2021-03, Vol.34 (11), p.108867-108867, Article 108867
issn 2211-1247
2211-1247
language eng
recordid cdi_proquest_miscellaneous_2502805605
source MEDLINE; DOAJ Directory of Open Access Journals; Cell Press Free Archives; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Acoustic Stimulation
Animals
brain clearing
Choline - metabolism
cholinergic interneurons
Conditioning, Classical
Cues
Discrimination Learning
Electroshock
Fear
fear conditioning
Female
GABA neurons
GABAergic Neurons - physiology
glutamate neurons
Glutamates - metabolism
Interneurons - physiology
Learning
Male
Mice
Mice, Inbred C57BL
midbrain
midbrain in vivo calcium imaging
optogenetic inhibition
Synapses - physiology
Thalamus - physiology
Ventral Tegmental Area - physiology
Vesicular Glutamate Transport Protein 2 - metabolism
title Lateral ventral tegmental area GABAergic and glutamatergic modulation of conditioned learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lateral%20ventral%20tegmental%20area%20GABAergic%20and%20glutamatergic%20modulation%20of%20conditioned%20learning&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Rizzi,%20Giorgio&rft.date=2021-03-16&rft.volume=34&rft.issue=11&rft.spage=108867&rft.epage=108867&rft.pages=108867-108867&rft.artnum=108867&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2021.108867&rft_dat=%3Cproquest_cross%3E2502805605%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502805605&rft_id=info:pmid/33730568&rft_els_id=S2211124721001819&rfr_iscdi=true