COVID-19 Pandemic Response Simulation in a Large City: Impact of Nonpharmaceutical Interventions on Reopening Society
As the novel coronavirus (COVID-19) pandemic continues to expand, policymakers are striving to balance the combinations of nonpharmaceutical interventions (NPIs) to keep people safe and minimize social disruptions. We developed and calibrated an agent-based simulation to model COVID-19 outbreaks in...
Gespeichert in:
Veröffentlicht in: | Medical decision making 2021-05, Vol.41 (4), p.419-429 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 429 |
---|---|
container_issue | 4 |
container_start_page | 419 |
container_title | Medical decision making |
container_volume | 41 |
creator | Lee, Serin Zabinsky, Zelda B. Wasserheit, Judith N. Kofsky, Stephen M. Liu, Shan |
description | As the novel coronavirus (COVID-19) pandemic continues to expand, policymakers are striving to balance the combinations of nonpharmaceutical interventions (NPIs) to keep people safe and minimize social disruptions. We developed and calibrated an agent-based simulation to model COVID-19 outbreaks in the greater Seattle area. The model simulated NPIs, including social distancing, face mask use, school closure, testing, and contact tracing with variable compliance and effectiveness to identify optimal NPI combinations that can control the spread of the virus in a large urban area. Results highlight the importance of at least 75% face mask use to relax social distancing and school closure measures while keeping infections low. It is important to relax NPIs cautiously during vaccine rollout in 2021. |
doi_str_mv | 10.1177/0272989X211003081 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2502804720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0272989X211003081</sage_id><sourcerecordid>2502804720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-d90b3e29c1a870a44f4e5ca204b37f642b03271da2f7db3783949c5cccbe6e403</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOl4ewI1k6aaaWyeNOxlvA4OKN9yVND0dI21Sk1aYt7dl1I3g6sA53_fD-RE6pOSEUilPCZNMZeqVUUoIJxndQBOapiyZZvR1E03GezICO2g3xndCqFCZ2EY7nEvOFecT1M_uXuYXCVX4XrsSGmvwA8TWuwj40TZ9rTvrHbYOa7zQYQl4ZrvVGZ43rTYd9hW-9a5906HRBvrOGl3juesgfIIbzYgH-wF8C866JX70xkK32kdbla4jHHzPPfR8dfk0u0kWd9fz2fkiMVyQLikVKTgwZajOJNFCVAJSoxkRBZfVVLCCcCZpqVkly2GVcSWUSY0xBUxBEL6Hjte5bfAfPcQub2w0UNfage9jzlLCMiIkG1G6Rk3wMQao8jbYRodVTkk-tp3_aXtwjr7j-6KB8tf4qXcATtZA1EvI330f3PDuP4lfgUCHzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502804720</pqid></control><display><type>article</type><title>COVID-19 Pandemic Response Simulation in a Large City: Impact of Nonpharmaceutical Interventions on Reopening Society</title><source>MEDLINE</source><source>SAGE Complete A-Z List</source><creator>Lee, Serin ; Zabinsky, Zelda B. ; Wasserheit, Judith N. ; Kofsky, Stephen M. ; Liu, Shan</creator><creatorcontrib>Lee, Serin ; Zabinsky, Zelda B. ; Wasserheit, Judith N. ; Kofsky, Stephen M. ; Liu, Shan</creatorcontrib><description>As the novel coronavirus (COVID-19) pandemic continues to expand, policymakers are striving to balance the combinations of nonpharmaceutical interventions (NPIs) to keep people safe and minimize social disruptions. We developed and calibrated an agent-based simulation to model COVID-19 outbreaks in the greater Seattle area. The model simulated NPIs, including social distancing, face mask use, school closure, testing, and contact tracing with variable compliance and effectiveness to identify optimal NPI combinations that can control the spread of the virus in a large urban area. Results highlight the importance of at least 75% face mask use to relax social distancing and school closure measures while keeping infections low. It is important to relax NPIs cautiously during vaccine rollout in 2021.</description><identifier>ISSN: 0272-989X</identifier><identifier>EISSN: 1552-681X</identifier><identifier>DOI: 10.1177/0272989X211003081</identifier><identifier>PMID: 33733933</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Communicable Disease Control - methods ; Computer Simulation ; Contact Tracing ; COVID-19 - prevention & control ; Disease Outbreaks ; Humans ; Masks ; Pandemics ; Physical Distancing ; SARS-CoV-2 ; Social Conditions ; Urban Population ; Washington</subject><ispartof>Medical decision making, 2021-05, Vol.41 (4), p.419-429</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-d90b3e29c1a870a44f4e5ca204b37f642b03271da2f7db3783949c5cccbe6e403</citedby><cites>FETCH-LOGICAL-c340t-d90b3e29c1a870a44f4e5ca204b37f642b03271da2f7db3783949c5cccbe6e403</cites><orcidid>0000-0003-1838-4981 ; 0000-0003-1459-8923 ; 0000-0002-5343-7244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0272989X211003081$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0272989X211003081$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21810,27915,27916,43612,43613</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33733933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Serin</creatorcontrib><creatorcontrib>Zabinsky, Zelda B.</creatorcontrib><creatorcontrib>Wasserheit, Judith N.</creatorcontrib><creatorcontrib>Kofsky, Stephen M.</creatorcontrib><creatorcontrib>Liu, Shan</creatorcontrib><title>COVID-19 Pandemic Response Simulation in a Large City: Impact of Nonpharmaceutical Interventions on Reopening Society</title><title>Medical decision making</title><addtitle>Med Decis Making</addtitle><description>As the novel coronavirus (COVID-19) pandemic continues to expand, policymakers are striving to balance the combinations of nonpharmaceutical interventions (NPIs) to keep people safe and minimize social disruptions. We developed and calibrated an agent-based simulation to model COVID-19 outbreaks in the greater Seattle area. The model simulated NPIs, including social distancing, face mask use, school closure, testing, and contact tracing with variable compliance and effectiveness to identify optimal NPI combinations that can control the spread of the virus in a large urban area. Results highlight the importance of at least 75% face mask use to relax social distancing and school closure measures while keeping infections low. It is important to relax NPIs cautiously during vaccine rollout in 2021.</description><subject>Communicable Disease Control - methods</subject><subject>Computer Simulation</subject><subject>Contact Tracing</subject><subject>COVID-19 - prevention & control</subject><subject>Disease Outbreaks</subject><subject>Humans</subject><subject>Masks</subject><subject>Pandemics</subject><subject>Physical Distancing</subject><subject>SARS-CoV-2</subject><subject>Social Conditions</subject><subject>Urban Population</subject><subject>Washington</subject><issn>0272-989X</issn><issn>1552-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUhoMoOl4ewI1k6aaaWyeNOxlvA4OKN9yVND0dI21Sk1aYt7dl1I3g6sA53_fD-RE6pOSEUilPCZNMZeqVUUoIJxndQBOapiyZZvR1E03GezICO2g3xndCqFCZ2EY7nEvOFecT1M_uXuYXCVX4XrsSGmvwA8TWuwj40TZ9rTvrHbYOa7zQYQl4ZrvVGZ43rTYd9hW-9a5906HRBvrOGl3juesgfIIbzYgH-wF8C866JX70xkK32kdbla4jHHzPPfR8dfk0u0kWd9fz2fkiMVyQLikVKTgwZajOJNFCVAJSoxkRBZfVVLCCcCZpqVkly2GVcSWUSY0xBUxBEL6Hjte5bfAfPcQub2w0UNfage9jzlLCMiIkG1G6Rk3wMQao8jbYRodVTkk-tp3_aXtwjr7j-6KB8tf4qXcATtZA1EvI330f3PDuP4lfgUCHzQ</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Lee, Serin</creator><creator>Zabinsky, Zelda B.</creator><creator>Wasserheit, Judith N.</creator><creator>Kofsky, Stephen M.</creator><creator>Liu, Shan</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1838-4981</orcidid><orcidid>https://orcid.org/0000-0003-1459-8923</orcidid><orcidid>https://orcid.org/0000-0002-5343-7244</orcidid></search><sort><creationdate>202105</creationdate><title>COVID-19 Pandemic Response Simulation in a Large City: Impact of Nonpharmaceutical Interventions on Reopening Society</title><author>Lee, Serin ; Zabinsky, Zelda B. ; Wasserheit, Judith N. ; Kofsky, Stephen M. ; Liu, Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-d90b3e29c1a870a44f4e5ca204b37f642b03271da2f7db3783949c5cccbe6e403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Communicable Disease Control - methods</topic><topic>Computer Simulation</topic><topic>Contact Tracing</topic><topic>COVID-19 - prevention & control</topic><topic>Disease Outbreaks</topic><topic>Humans</topic><topic>Masks</topic><topic>Pandemics</topic><topic>Physical Distancing</topic><topic>SARS-CoV-2</topic><topic>Social Conditions</topic><topic>Urban Population</topic><topic>Washington</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Serin</creatorcontrib><creatorcontrib>Zabinsky, Zelda B.</creatorcontrib><creatorcontrib>Wasserheit, Judith N.</creatorcontrib><creatorcontrib>Kofsky, Stephen M.</creatorcontrib><creatorcontrib>Liu, Shan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical decision making</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Serin</au><au>Zabinsky, Zelda B.</au><au>Wasserheit, Judith N.</au><au>Kofsky, Stephen M.</au><au>Liu, Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COVID-19 Pandemic Response Simulation in a Large City: Impact of Nonpharmaceutical Interventions on Reopening Society</atitle><jtitle>Medical decision making</jtitle><addtitle>Med Decis Making</addtitle><date>2021-05</date><risdate>2021</risdate><volume>41</volume><issue>4</issue><spage>419</spage><epage>429</epage><pages>419-429</pages><issn>0272-989X</issn><eissn>1552-681X</eissn><abstract>As the novel coronavirus (COVID-19) pandemic continues to expand, policymakers are striving to balance the combinations of nonpharmaceutical interventions (NPIs) to keep people safe and minimize social disruptions. We developed and calibrated an agent-based simulation to model COVID-19 outbreaks in the greater Seattle area. The model simulated NPIs, including social distancing, face mask use, school closure, testing, and contact tracing with variable compliance and effectiveness to identify optimal NPI combinations that can control the spread of the virus in a large urban area. Results highlight the importance of at least 75% face mask use to relax social distancing and school closure measures while keeping infections low. It is important to relax NPIs cautiously during vaccine rollout in 2021.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>33733933</pmid><doi>10.1177/0272989X211003081</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1838-4981</orcidid><orcidid>https://orcid.org/0000-0003-1459-8923</orcidid><orcidid>https://orcid.org/0000-0002-5343-7244</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-989X |
ispartof | Medical decision making, 2021-05, Vol.41 (4), p.419-429 |
issn | 0272-989X 1552-681X |
language | eng |
recordid | cdi_proquest_miscellaneous_2502804720 |
source | MEDLINE; SAGE Complete A-Z List |
subjects | Communicable Disease Control - methods Computer Simulation Contact Tracing COVID-19 - prevention & control Disease Outbreaks Humans Masks Pandemics Physical Distancing SARS-CoV-2 Social Conditions Urban Population Washington |
title | COVID-19 Pandemic Response Simulation in a Large City: Impact of Nonpharmaceutical Interventions on Reopening Society |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COVID-19%20Pandemic%20Response%20Simulation%20in%20a%20Large%20City:%20Impact%20of%20Nonpharmaceutical%20Interventions%20on%20Reopening%20Society&rft.jtitle=Medical%20decision%20making&rft.au=Lee,%20Serin&rft.date=2021-05&rft.volume=41&rft.issue=4&rft.spage=419&rft.epage=429&rft.pages=419-429&rft.issn=0272-989X&rft.eissn=1552-681X&rft_id=info:doi/10.1177/0272989X211003081&rft_dat=%3Cproquest_cross%3E2502804720%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502804720&rft_id=info:pmid/33733933&rft_sage_id=10.1177_0272989X211003081&rfr_iscdi=true |