Ultra-thin boundary layer for high-accuracy simulations of light propagation

The modified Born series method is currently one of the most efficient methods available for simulating light scattering in large inhomogeneous media. However, to achieve high accuracy, the method requires thick gradually absorbing layers around the simulation domain. Here, we introduce new boundary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2021-01, Vol.29 (2), p.1649-1658
Hauptverfasser: Osnabrugge, Gerwin, Benedictus, Maaike, Vellekoop, Ivo M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1658
container_issue 2
container_start_page 1649
container_title Optics express
container_volume 29
creator Osnabrugge, Gerwin
Benedictus, Maaike
Vellekoop, Ivo M
description The modified Born series method is currently one of the most efficient methods available for simulating light scattering in large inhomogeneous media. However, to achieve high accuracy, the method requires thick gradually absorbing layers around the simulation domain. Here, we introduce new boundary conditions, combining a padding-free acyclic convolution with an ultra-thin boundary layer. Our new boundary conditions minimize the wrap-around and reflection artefacts originating from the edges of the simulation domain, while also greatly reducing the computational costs and the memory requirements of the method. Our GPU-accelerated Matlab implementation is available on GitHub.
doi_str_mv 10.1364/OE.412833
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2502212108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502212108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-b8af730d57a4b4b654dc6fd3379b7a17e43941ab94efc3c86c08ebc6c41004d43</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EoqWw4AeQl7BI8WMaJ0tUlYdUqRu6tmzHboOcuNjJIn9PoAWxmtHM0Z07F6FbSuaU5_C4Wc2BsoLzMzSlpIQMSCHO__UTdJXSByEURCku0YRzwXIuYIrWW99FlXX7usU69G2l4oC9GmzELkS8r3f7TBnTR2UGnOqm96qrQ5twcNiPyw4fYjio3c_0Gl045ZO9OdUZ2j6v3pev2Xrz8rZ8WmeGM9JlulBOcFIthAINOl9AZXJXjaZKLRQVFngJVOkSrDPcFLkhhdUmN0AJgQr4DN0fdcfbn71NnWzqZKz3qrWhT5ItCGOUUVKM6MMRNTGkFK2Th1g345OSEvkdntys5DG8kb07yfa6sdUf-ZsW_wJCiWnu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502212108</pqid></control><display><type>article</type><title>Ultra-thin boundary layer for high-accuracy simulations of light propagation</title><source>Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Osnabrugge, Gerwin ; Benedictus, Maaike ; Vellekoop, Ivo M</creator><creatorcontrib>Osnabrugge, Gerwin ; Benedictus, Maaike ; Vellekoop, Ivo M</creatorcontrib><description>The modified Born series method is currently one of the most efficient methods available for simulating light scattering in large inhomogeneous media. However, to achieve high accuracy, the method requires thick gradually absorbing layers around the simulation domain. Here, we introduce new boundary conditions, combining a padding-free acyclic convolution with an ultra-thin boundary layer. Our new boundary conditions minimize the wrap-around and reflection artefacts originating from the edges of the simulation domain, while also greatly reducing the computational costs and the memory requirements of the method. Our GPU-accelerated Matlab implementation is available on GitHub.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.412833</identifier><identifier>PMID: 33726374</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2021-01, Vol.29 (2), p.1649-1658</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-b8af730d57a4b4b654dc6fd3379b7a17e43941ab94efc3c86c08ebc6c41004d43</citedby><cites>FETCH-LOGICAL-c320t-b8af730d57a4b4b654dc6fd3379b7a17e43941ab94efc3c86c08ebc6c41004d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33726374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Osnabrugge, Gerwin</creatorcontrib><creatorcontrib>Benedictus, Maaike</creatorcontrib><creatorcontrib>Vellekoop, Ivo M</creatorcontrib><title>Ultra-thin boundary layer for high-accuracy simulations of light propagation</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>The modified Born series method is currently one of the most efficient methods available for simulating light scattering in large inhomogeneous media. However, to achieve high accuracy, the method requires thick gradually absorbing layers around the simulation domain. Here, we introduce new boundary conditions, combining a padding-free acyclic convolution with an ultra-thin boundary layer. Our new boundary conditions minimize the wrap-around and reflection artefacts originating from the edges of the simulation domain, while also greatly reducing the computational costs and the memory requirements of the method. Our GPU-accelerated Matlab implementation is available on GitHub.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EoqWw4AeQl7BI8WMaJ0tUlYdUqRu6tmzHboOcuNjJIn9PoAWxmtHM0Z07F6FbSuaU5_C4Wc2BsoLzMzSlpIQMSCHO__UTdJXSByEURCku0YRzwXIuYIrWW99FlXX7usU69G2l4oC9GmzELkS8r3f7TBnTR2UGnOqm96qrQ5twcNiPyw4fYjio3c_0Gl045ZO9OdUZ2j6v3pev2Xrz8rZ8WmeGM9JlulBOcFIthAINOl9AZXJXjaZKLRQVFngJVOkSrDPcFLkhhdUmN0AJgQr4DN0fdcfbn71NnWzqZKz3qrWhT5ItCGOUUVKM6MMRNTGkFK2Th1g345OSEvkdntys5DG8kb07yfa6sdUf-ZsW_wJCiWnu</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>Osnabrugge, Gerwin</creator><creator>Benedictus, Maaike</creator><creator>Vellekoop, Ivo M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210118</creationdate><title>Ultra-thin boundary layer for high-accuracy simulations of light propagation</title><author>Osnabrugge, Gerwin ; Benedictus, Maaike ; Vellekoop, Ivo M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-b8af730d57a4b4b654dc6fd3379b7a17e43941ab94efc3c86c08ebc6c41004d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osnabrugge, Gerwin</creatorcontrib><creatorcontrib>Benedictus, Maaike</creatorcontrib><creatorcontrib>Vellekoop, Ivo M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osnabrugge, Gerwin</au><au>Benedictus, Maaike</au><au>Vellekoop, Ivo M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-thin boundary layer for high-accuracy simulations of light propagation</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2021-01-18</date><risdate>2021</risdate><volume>29</volume><issue>2</issue><spage>1649</spage><epage>1658</epage><pages>1649-1658</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>The modified Born series method is currently one of the most efficient methods available for simulating light scattering in large inhomogeneous media. However, to achieve high accuracy, the method requires thick gradually absorbing layers around the simulation domain. Here, we introduce new boundary conditions, combining a padding-free acyclic convolution with an ultra-thin boundary layer. Our new boundary conditions minimize the wrap-around and reflection artefacts originating from the edges of the simulation domain, while also greatly reducing the computational costs and the memory requirements of the method. Our GPU-accelerated Matlab implementation is available on GitHub.</abstract><cop>United States</cop><pmid>33726374</pmid><doi>10.1364/OE.412833</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2021-01, Vol.29 (2), p.1649-1658
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2502212108
source Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection
title Ultra-thin boundary layer for high-accuracy simulations of light propagation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-thin%20boundary%20layer%20for%20high-accuracy%20simulations%20of%20light%20propagation&rft.jtitle=Optics%20express&rft.au=Osnabrugge,%20Gerwin&rft.date=2021-01-18&rft.volume=29&rft.issue=2&rft.spage=1649&rft.epage=1658&rft.pages=1649-1658&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.412833&rft_dat=%3Cproquest_cross%3E2502212108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502212108&rft_id=info:pmid/33726374&rfr_iscdi=true