Ultra-thin boundary layer for high-accuracy simulations of light propagation
The modified Born series method is currently one of the most efficient methods available for simulating light scattering in large inhomogeneous media. However, to achieve high accuracy, the method requires thick gradually absorbing layers around the simulation domain. Here, we introduce new boundary...
Gespeichert in:
Veröffentlicht in: | Optics express 2021-01, Vol.29 (2), p.1649-1658 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1658 |
---|---|
container_issue | 2 |
container_start_page | 1649 |
container_title | Optics express |
container_volume | 29 |
creator | Osnabrugge, Gerwin Benedictus, Maaike Vellekoop, Ivo M |
description | The modified Born series method is currently one of the most efficient methods available for simulating light scattering in large inhomogeneous media. However, to achieve high accuracy, the method requires thick gradually absorbing layers around the simulation domain. Here, we introduce new boundary conditions, combining a padding-free acyclic convolution with an ultra-thin boundary layer. Our new boundary conditions minimize the wrap-around and reflection artefacts originating from the edges of the simulation domain, while also greatly reducing the computational costs and the memory requirements of the method. Our GPU-accelerated Matlab implementation is available on GitHub. |
doi_str_mv | 10.1364/OE.412833 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2502212108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502212108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-b8af730d57a4b4b654dc6fd3379b7a17e43941ab94efc3c86c08ebc6c41004d43</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EoqWw4AeQl7BI8WMaJ0tUlYdUqRu6tmzHboOcuNjJIn9PoAWxmtHM0Z07F6FbSuaU5_C4Wc2BsoLzMzSlpIQMSCHO__UTdJXSByEURCku0YRzwXIuYIrWW99FlXX7usU69G2l4oC9GmzELkS8r3f7TBnTR2UGnOqm96qrQ5twcNiPyw4fYjio3c_0Gl045ZO9OdUZ2j6v3pev2Xrz8rZ8WmeGM9JlulBOcFIthAINOl9AZXJXjaZKLRQVFngJVOkSrDPcFLkhhdUmN0AJgQr4DN0fdcfbn71NnWzqZKz3qrWhT5ItCGOUUVKM6MMRNTGkFK2Th1g345OSEvkdntys5DG8kb07yfa6sdUf-ZsW_wJCiWnu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502212108</pqid></control><display><type>article</type><title>Ultra-thin boundary layer for high-accuracy simulations of light propagation</title><source>Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Osnabrugge, Gerwin ; Benedictus, Maaike ; Vellekoop, Ivo M</creator><creatorcontrib>Osnabrugge, Gerwin ; Benedictus, Maaike ; Vellekoop, Ivo M</creatorcontrib><description>The modified Born series method is currently one of the most efficient methods available for simulating light scattering in large inhomogeneous media. However, to achieve high accuracy, the method requires thick gradually absorbing layers around the simulation domain. Here, we introduce new boundary conditions, combining a padding-free acyclic convolution with an ultra-thin boundary layer. Our new boundary conditions minimize the wrap-around and reflection artefacts originating from the edges of the simulation domain, while also greatly reducing the computational costs and the memory requirements of the method. Our GPU-accelerated Matlab implementation is available on GitHub.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.412833</identifier><identifier>PMID: 33726374</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2021-01, Vol.29 (2), p.1649-1658</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-b8af730d57a4b4b654dc6fd3379b7a17e43941ab94efc3c86c08ebc6c41004d43</citedby><cites>FETCH-LOGICAL-c320t-b8af730d57a4b4b654dc6fd3379b7a17e43941ab94efc3c86c08ebc6c41004d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33726374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Osnabrugge, Gerwin</creatorcontrib><creatorcontrib>Benedictus, Maaike</creatorcontrib><creatorcontrib>Vellekoop, Ivo M</creatorcontrib><title>Ultra-thin boundary layer for high-accuracy simulations of light propagation</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>The modified Born series method is currently one of the most efficient methods available for simulating light scattering in large inhomogeneous media. However, to achieve high accuracy, the method requires thick gradually absorbing layers around the simulation domain. Here, we introduce new boundary conditions, combining a padding-free acyclic convolution with an ultra-thin boundary layer. Our new boundary conditions minimize the wrap-around and reflection artefacts originating from the edges of the simulation domain, while also greatly reducing the computational costs and the memory requirements of the method. Our GPU-accelerated Matlab implementation is available on GitHub.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EoqWw4AeQl7BI8WMaJ0tUlYdUqRu6tmzHboOcuNjJIn9PoAWxmtHM0Z07F6FbSuaU5_C4Wc2BsoLzMzSlpIQMSCHO__UTdJXSByEURCku0YRzwXIuYIrWW99FlXX7usU69G2l4oC9GmzELkS8r3f7TBnTR2UGnOqm96qrQ5twcNiPyw4fYjio3c_0Gl045ZO9OdUZ2j6v3pev2Xrz8rZ8WmeGM9JlulBOcFIthAINOl9AZXJXjaZKLRQVFngJVOkSrDPcFLkhhdUmN0AJgQr4DN0fdcfbn71NnWzqZKz3qrWhT5ItCGOUUVKM6MMRNTGkFK2Th1g345OSEvkdntys5DG8kb07yfa6sdUf-ZsW_wJCiWnu</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>Osnabrugge, Gerwin</creator><creator>Benedictus, Maaike</creator><creator>Vellekoop, Ivo M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210118</creationdate><title>Ultra-thin boundary layer for high-accuracy simulations of light propagation</title><author>Osnabrugge, Gerwin ; Benedictus, Maaike ; Vellekoop, Ivo M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-b8af730d57a4b4b654dc6fd3379b7a17e43941ab94efc3c86c08ebc6c41004d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osnabrugge, Gerwin</creatorcontrib><creatorcontrib>Benedictus, Maaike</creatorcontrib><creatorcontrib>Vellekoop, Ivo M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osnabrugge, Gerwin</au><au>Benedictus, Maaike</au><au>Vellekoop, Ivo M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-thin boundary layer for high-accuracy simulations of light propagation</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2021-01-18</date><risdate>2021</risdate><volume>29</volume><issue>2</issue><spage>1649</spage><epage>1658</epage><pages>1649-1658</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>The modified Born series method is currently one of the most efficient methods available for simulating light scattering in large inhomogeneous media. However, to achieve high accuracy, the method requires thick gradually absorbing layers around the simulation domain. Here, we introduce new boundary conditions, combining a padding-free acyclic convolution with an ultra-thin boundary layer. Our new boundary conditions minimize the wrap-around and reflection artefacts originating from the edges of the simulation domain, while also greatly reducing the computational costs and the memory requirements of the method. Our GPU-accelerated Matlab implementation is available on GitHub.</abstract><cop>United States</cop><pmid>33726374</pmid><doi>10.1364/OE.412833</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2021-01, Vol.29 (2), p.1649-1658 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2502212108 |
source | Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection |
title | Ultra-thin boundary layer for high-accuracy simulations of light propagation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-thin%20boundary%20layer%20for%20high-accuracy%20simulations%20of%20light%20propagation&rft.jtitle=Optics%20express&rft.au=Osnabrugge,%20Gerwin&rft.date=2021-01-18&rft.volume=29&rft.issue=2&rft.spage=1649&rft.epage=1658&rft.pages=1649-1658&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.412833&rft_dat=%3Cproquest_cross%3E2502212108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502212108&rft_id=info:pmid/33726374&rfr_iscdi=true |