Optimal, blind-search modal wavefront correction in atmospheric turbulence. Part I: simulations

Modal control is an established tool in adaptive optics. It allows not only for the reduction in the controllable degrees of freedom, but also for filtering out unseen modes and optimizing gain on a mode-by-mode basis. When Zernike polynomials are employed as the modal basis for correcting atmospher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2021-01, Vol.29 (2), p.805-820
Hauptverfasser: Segel, Max, Gladysz, Szymon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 820
container_issue 2
container_start_page 805
container_title Optics express
container_volume 29
creator Segel, Max
Gladysz, Szymon
description Modal control is an established tool in adaptive optics. It allows not only for the reduction in the controllable degrees of freedom, but also for filtering out unseen modes and optimizing gain on a mode-by-mode basis. When Zernike polynomials are employed as the modal basis for correcting atmospheric turbulence, their cross-correlations translate to correction errors. We propose optimal modal decomposition for gradient-descent-based wavefront sensorless adaptive optics, which is free of this problem. We adopt statistically independent Karhunen-Loève functions for iterative blind correction and analyze performance of the algorithm in static as well as in dynamic simulated turbulence conditions.
doi_str_mv 10.1364/OE.408682
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2502211675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502211675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2352-517d3b91172212e2ec02d773568c435b62077e0316440f35d041468f9a802f143</originalsourceid><addsrcrecordid>eNpNkE9LwzAYh4Mobk4PfgHJUcHO_GvSepMxdTCoBz2HNH3LKmkzk1bx29uxKZ7e3wsPz-FB6JKSOeVS3BXLuSCZzNgRmlKSi2T81PG_PUFnMb4TQoXK1SmacK6Y5CSfIl1s-6Y17haXrumqJIIJdoNbXxmHv8wn1MF3PbY-BLB94zvcdNj0rY_bDYTG4n4I5eCgszDHLyb0eHWPY9MOzuzoeI5OauMiXBzuDL09Ll8Xz8m6eFotHtaJZTxlSUpVxcucUsUYZcDAElYpxVOZWcHTUjKiFBBOpRCk5mlFBBUyq3OTEVZTwWfoeu_dBv8xQOx120QLzpkO_BA1S8loplKlI3qzR23wMQao9TaMCcK3pkTveupiqfc9R_bqoB3KFqo_8jcg_wHsZm42</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502211675</pqid></control><display><type>article</type><title>Optimal, blind-search modal wavefront correction in atmospheric turbulence. Part I: simulations</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Segel, Max ; Gladysz, Szymon</creator><creatorcontrib>Segel, Max ; Gladysz, Szymon</creatorcontrib><description>Modal control is an established tool in adaptive optics. It allows not only for the reduction in the controllable degrees of freedom, but also for filtering out unseen modes and optimizing gain on a mode-by-mode basis. When Zernike polynomials are employed as the modal basis for correcting atmospheric turbulence, their cross-correlations translate to correction errors. We propose optimal modal decomposition for gradient-descent-based wavefront sensorless adaptive optics, which is free of this problem. We adopt statistically independent Karhunen-Loève functions for iterative blind correction and analyze performance of the algorithm in static as well as in dynamic simulated turbulence conditions.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.408682</identifier><identifier>PMID: 33726309</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2021-01, Vol.29 (2), p.805-820</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2352-517d3b91172212e2ec02d773568c435b62077e0316440f35d041468f9a802f143</citedby><cites>FETCH-LOGICAL-c2352-517d3b91172212e2ec02d773568c435b62077e0316440f35d041468f9a802f143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33726309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Segel, Max</creatorcontrib><creatorcontrib>Gladysz, Szymon</creatorcontrib><title>Optimal, blind-search modal wavefront correction in atmospheric turbulence. Part I: simulations</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Modal control is an established tool in adaptive optics. It allows not only for the reduction in the controllable degrees of freedom, but also for filtering out unseen modes and optimizing gain on a mode-by-mode basis. When Zernike polynomials are employed as the modal basis for correcting atmospheric turbulence, their cross-correlations translate to correction errors. We propose optimal modal decomposition for gradient-descent-based wavefront sensorless adaptive optics, which is free of this problem. We adopt statistically independent Karhunen-Loève functions for iterative blind correction and analyze performance of the algorithm in static as well as in dynamic simulated turbulence conditions.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LwzAYh4Mobk4PfgHJUcHO_GvSepMxdTCoBz2HNH3LKmkzk1bx29uxKZ7e3wsPz-FB6JKSOeVS3BXLuSCZzNgRmlKSi2T81PG_PUFnMb4TQoXK1SmacK6Y5CSfIl1s-6Y17haXrumqJIIJdoNbXxmHv8wn1MF3PbY-BLB94zvcdNj0rY_bDYTG4n4I5eCgszDHLyb0eHWPY9MOzuzoeI5OauMiXBzuDL09Ll8Xz8m6eFotHtaJZTxlSUpVxcucUsUYZcDAElYpxVOZWcHTUjKiFBBOpRCk5mlFBBUyq3OTEVZTwWfoeu_dBv8xQOx120QLzpkO_BA1S8loplKlI3qzR23wMQao9TaMCcK3pkTveupiqfc9R_bqoB3KFqo_8jcg_wHsZm42</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>Segel, Max</creator><creator>Gladysz, Szymon</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210118</creationdate><title>Optimal, blind-search modal wavefront correction in atmospheric turbulence. Part I: simulations</title><author>Segel, Max ; Gladysz, Szymon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2352-517d3b91172212e2ec02d773568c435b62077e0316440f35d041468f9a802f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Segel, Max</creatorcontrib><creatorcontrib>Gladysz, Szymon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Segel, Max</au><au>Gladysz, Szymon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal, blind-search modal wavefront correction in atmospheric turbulence. Part I: simulations</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2021-01-18</date><risdate>2021</risdate><volume>29</volume><issue>2</issue><spage>805</spage><epage>820</epage><pages>805-820</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Modal control is an established tool in adaptive optics. It allows not only for the reduction in the controllable degrees of freedom, but also for filtering out unseen modes and optimizing gain on a mode-by-mode basis. When Zernike polynomials are employed as the modal basis for correcting atmospheric turbulence, their cross-correlations translate to correction errors. We propose optimal modal decomposition for gradient-descent-based wavefront sensorless adaptive optics, which is free of this problem. We adopt statistically independent Karhunen-Loève functions for iterative blind correction and analyze performance of the algorithm in static as well as in dynamic simulated turbulence conditions.</abstract><cop>United States</cop><pmid>33726309</pmid><doi>10.1364/OE.408682</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2021-01, Vol.29 (2), p.805-820
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2502211675
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Optimal, blind-search modal wavefront correction in atmospheric turbulence. Part I: simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal,%20blind-search%20modal%20wavefront%20correction%20in%20atmospheric%20turbulence.%20Part%20I:%20simulations&rft.jtitle=Optics%20express&rft.au=Segel,%20Max&rft.date=2021-01-18&rft.volume=29&rft.issue=2&rft.spage=805&rft.epage=820&rft.pages=805-820&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.408682&rft_dat=%3Cproquest_cross%3E2502211675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502211675&rft_id=info:pmid/33726309&rfr_iscdi=true