Optimal, blind-search modal wavefront correction in atmospheric turbulence. Part I: simulations
Modal control is an established tool in adaptive optics. It allows not only for the reduction in the controllable degrees of freedom, but also for filtering out unseen modes and optimizing gain on a mode-by-mode basis. When Zernike polynomials are employed as the modal basis for correcting atmospher...
Gespeichert in:
Veröffentlicht in: | Optics express 2021-01, Vol.29 (2), p.805-820 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 820 |
---|---|
container_issue | 2 |
container_start_page | 805 |
container_title | Optics express |
container_volume | 29 |
creator | Segel, Max Gladysz, Szymon |
description | Modal control is an established tool in adaptive optics. It allows not only for the reduction in the controllable degrees of freedom, but also for filtering out unseen modes and optimizing gain on a mode-by-mode basis. When Zernike polynomials are employed as the modal basis for correcting atmospheric turbulence, their cross-correlations translate to correction errors. We propose optimal modal decomposition for gradient-descent-based wavefront sensorless adaptive optics, which is free of this problem. We adopt statistically independent Karhunen-Loève functions for iterative blind correction and analyze performance of the algorithm in static as well as in dynamic simulated turbulence conditions. |
doi_str_mv | 10.1364/OE.408682 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2502211675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502211675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2352-517d3b91172212e2ec02d773568c435b62077e0316440f35d041468f9a802f143</originalsourceid><addsrcrecordid>eNpNkE9LwzAYh4Mobk4PfgHJUcHO_GvSepMxdTCoBz2HNH3LKmkzk1bx29uxKZ7e3wsPz-FB6JKSOeVS3BXLuSCZzNgRmlKSi2T81PG_PUFnMb4TQoXK1SmacK6Y5CSfIl1s-6Y17haXrumqJIIJdoNbXxmHv8wn1MF3PbY-BLB94zvcdNj0rY_bDYTG4n4I5eCgszDHLyb0eHWPY9MOzuzoeI5OauMiXBzuDL09Ll8Xz8m6eFotHtaJZTxlSUpVxcucUsUYZcDAElYpxVOZWcHTUjKiFBBOpRCk5mlFBBUyq3OTEVZTwWfoeu_dBv8xQOx120QLzpkO_BA1S8loplKlI3qzR23wMQao9TaMCcK3pkTveupiqfc9R_bqoB3KFqo_8jcg_wHsZm42</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502211675</pqid></control><display><type>article</type><title>Optimal, blind-search modal wavefront correction in atmospheric turbulence. Part I: simulations</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Segel, Max ; Gladysz, Szymon</creator><creatorcontrib>Segel, Max ; Gladysz, Szymon</creatorcontrib><description>Modal control is an established tool in adaptive optics. It allows not only for the reduction in the controllable degrees of freedom, but also for filtering out unseen modes and optimizing gain on a mode-by-mode basis. When Zernike polynomials are employed as the modal basis for correcting atmospheric turbulence, their cross-correlations translate to correction errors. We propose optimal modal decomposition for gradient-descent-based wavefront sensorless adaptive optics, which is free of this problem. We adopt statistically independent Karhunen-Loève functions for iterative blind correction and analyze performance of the algorithm in static as well as in dynamic simulated turbulence conditions.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.408682</identifier><identifier>PMID: 33726309</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2021-01, Vol.29 (2), p.805-820</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2352-517d3b91172212e2ec02d773568c435b62077e0316440f35d041468f9a802f143</citedby><cites>FETCH-LOGICAL-c2352-517d3b91172212e2ec02d773568c435b62077e0316440f35d041468f9a802f143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33726309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Segel, Max</creatorcontrib><creatorcontrib>Gladysz, Szymon</creatorcontrib><title>Optimal, blind-search modal wavefront correction in atmospheric turbulence. Part I: simulations</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Modal control is an established tool in adaptive optics. It allows not only for the reduction in the controllable degrees of freedom, but also for filtering out unseen modes and optimizing gain on a mode-by-mode basis. When Zernike polynomials are employed as the modal basis for correcting atmospheric turbulence, their cross-correlations translate to correction errors. We propose optimal modal decomposition for gradient-descent-based wavefront sensorless adaptive optics, which is free of this problem. We adopt statistically independent Karhunen-Loève functions for iterative blind correction and analyze performance of the algorithm in static as well as in dynamic simulated turbulence conditions.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LwzAYh4Mobk4PfgHJUcHO_GvSepMxdTCoBz2HNH3LKmkzk1bx29uxKZ7e3wsPz-FB6JKSOeVS3BXLuSCZzNgRmlKSi2T81PG_PUFnMb4TQoXK1SmacK6Y5CSfIl1s-6Y17haXrumqJIIJdoNbXxmHv8wn1MF3PbY-BLB94zvcdNj0rY_bDYTG4n4I5eCgszDHLyb0eHWPY9MOzuzoeI5OauMiXBzuDL09Ll8Xz8m6eFotHtaJZTxlSUpVxcucUsUYZcDAElYpxVOZWcHTUjKiFBBOpRCk5mlFBBUyq3OTEVZTwWfoeu_dBv8xQOx120QLzpkO_BA1S8loplKlI3qzR23wMQao9TaMCcK3pkTveupiqfc9R_bqoB3KFqo_8jcg_wHsZm42</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>Segel, Max</creator><creator>Gladysz, Szymon</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210118</creationdate><title>Optimal, blind-search modal wavefront correction in atmospheric turbulence. Part I: simulations</title><author>Segel, Max ; Gladysz, Szymon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2352-517d3b91172212e2ec02d773568c435b62077e0316440f35d041468f9a802f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Segel, Max</creatorcontrib><creatorcontrib>Gladysz, Szymon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Segel, Max</au><au>Gladysz, Szymon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal, blind-search modal wavefront correction in atmospheric turbulence. Part I: simulations</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2021-01-18</date><risdate>2021</risdate><volume>29</volume><issue>2</issue><spage>805</spage><epage>820</epage><pages>805-820</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Modal control is an established tool in adaptive optics. It allows not only for the reduction in the controllable degrees of freedom, but also for filtering out unseen modes and optimizing gain on a mode-by-mode basis. When Zernike polynomials are employed as the modal basis for correcting atmospheric turbulence, their cross-correlations translate to correction errors. We propose optimal modal decomposition for gradient-descent-based wavefront sensorless adaptive optics, which is free of this problem. We adopt statistically independent Karhunen-Loève functions for iterative blind correction and analyze performance of the algorithm in static as well as in dynamic simulated turbulence conditions.</abstract><cop>United States</cop><pmid>33726309</pmid><doi>10.1364/OE.408682</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2021-01, Vol.29 (2), p.805-820 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2502211675 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | Optimal, blind-search modal wavefront correction in atmospheric turbulence. Part I: simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal,%20blind-search%20modal%20wavefront%20correction%20in%20atmospheric%20turbulence.%20Part%20I:%20simulations&rft.jtitle=Optics%20express&rft.au=Segel,%20Max&rft.date=2021-01-18&rft.volume=29&rft.issue=2&rft.spage=805&rft.epage=820&rft.pages=805-820&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.408682&rft_dat=%3Cproquest_cross%3E2502211675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502211675&rft_id=info:pmid/33726309&rfr_iscdi=true |