Recurrent neural network reveals transparent objects through scattering media

Scattering generally worsens the condition of inverse problems, with the severity depending on the statistics of the refractive index gradient and contrast. Removing scattering artifacts from images has attracted much work in the literature, including recently the use of static neural networks. S. L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2021-02, Vol.29 (4), p.5316-5326
Hauptverfasser: Kang, Iksung, Pang, Subeen, Zhang, Qihang, Fang, Nicholas, Barbastathis, George
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5326
container_issue 4
container_start_page 5316
container_title Optics express
container_volume 29
creator Kang, Iksung
Pang, Subeen
Zhang, Qihang
Fang, Nicholas
Barbastathis, George
description Scattering generally worsens the condition of inverse problems, with the severity depending on the statistics of the refractive index gradient and contrast. Removing scattering artifacts from images has attracted much work in the literature, including recently the use of static neural networks. S. Li et al. [Optica5(7), 803 (2018)10.1364/OPTICA.5.000803] trained a convolutional neural network to reveal amplitude objects hidden by a specific diffuser; whereas Y. Li et al. [Optica5(10), 1181 (2018)10.1364/OPTICA.5.001181] were able to deal with arbitrary diffusers, as long as certain statistical criteria were met. Here, we propose a novel dynamical machine learning approach for the case of imaging phase objects through arbitrary diffusers. The motivation is to strengthen the correlation among the patterns during the training and to reveal phase objects through scattering media. We utilize the on-axis rotation of a diffuser to impart dynamics and utilize multiple speckle measurements from different angles to form a sequence of images for training. Recurrent neural networks (RNN) embedded with the dynamics filter out useful information and discard the redundancies, thus quantitative phase information in presence of strong scattering. In other words, the RNN effectively averages out the effect of the dynamic random scattering media and learns more about the static pattern. The dynamical approach reveals transparent images behind the scattering media out of speckle correlation among adjacent measurements in a sequence. This method is also applicable to other imaging applications that involve any other spatiotemporal dynamics.
doi_str_mv 10.1364/OE.412890
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2502205078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502205078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-9128364e9249023bcb7c65b178d4e748413ac1a82d101e9a398f5c8acbc26c7d3</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EoqVw4A-gHOGQsn4kto-oKg-pqBKCc-Q42zYlTYrtgPj3GFoQp1mtvh3NDiHnFMaU5-J6Ph0LypSGAzKkoEUqQMnDf_OAnHi_BqBCanlMBpxLloOEIXl8Qts7h21IWuydaaKEj869Jg7f0TQ-Cc60fmt-kK5cow1xt3Jdv1wl3poQ0NXtMtlgVZtTcrSIN3i21xF5uZ0-T-7T2fzuYXIzSy1nEFIdw8bcqJnQwHhpS2nzrKRSVQKlUIJyY6lRrKJAURuu1SKzytjSstzKio_I5c5367q3Hn0oNrW32DSmxa73BcuAMchAqohe7VDrOu8dLoqtqzfGfRYUiu_2ivm02LUX2Yu9bV_Gf_7I37r4F94-ajI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502205078</pqid></control><display><type>article</type><title>Recurrent neural network reveals transparent objects through scattering media</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kang, Iksung ; Pang, Subeen ; Zhang, Qihang ; Fang, Nicholas ; Barbastathis, George</creator><creatorcontrib>Kang, Iksung ; Pang, Subeen ; Zhang, Qihang ; Fang, Nicholas ; Barbastathis, George</creatorcontrib><description>Scattering generally worsens the condition of inverse problems, with the severity depending on the statistics of the refractive index gradient and contrast. Removing scattering artifacts from images has attracted much work in the literature, including recently the use of static neural networks. S. Li et al. [Optica5(7), 803 (2018)10.1364/OPTICA.5.000803] trained a convolutional neural network to reveal amplitude objects hidden by a specific diffuser; whereas Y. Li et al. [Optica5(10), 1181 (2018)10.1364/OPTICA.5.001181] were able to deal with arbitrary diffusers, as long as certain statistical criteria were met. Here, we propose a novel dynamical machine learning approach for the case of imaging phase objects through arbitrary diffusers. The motivation is to strengthen the correlation among the patterns during the training and to reveal phase objects through scattering media. We utilize the on-axis rotation of a diffuser to impart dynamics and utilize multiple speckle measurements from different angles to form a sequence of images for training. Recurrent neural networks (RNN) embedded with the dynamics filter out useful information and discard the redundancies, thus quantitative phase information in presence of strong scattering. In other words, the RNN effectively averages out the effect of the dynamic random scattering media and learns more about the static pattern. The dynamical approach reveals transparent images behind the scattering media out of speckle correlation among adjacent measurements in a sequence. This method is also applicable to other imaging applications that involve any other spatiotemporal dynamics.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.412890</identifier><identifier>PMID: 33726070</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2021-02, Vol.29 (4), p.5316-5326</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-9128364e9249023bcb7c65b178d4e748413ac1a82d101e9a398f5c8acbc26c7d3</citedby><cites>FETCH-LOGICAL-c320t-9128364e9249023bcb7c65b178d4e748413ac1a82d101e9a398f5c8acbc26c7d3</cites><orcidid>0000-0002-4009-6743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33726070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Iksung</creatorcontrib><creatorcontrib>Pang, Subeen</creatorcontrib><creatorcontrib>Zhang, Qihang</creatorcontrib><creatorcontrib>Fang, Nicholas</creatorcontrib><creatorcontrib>Barbastathis, George</creatorcontrib><title>Recurrent neural network reveals transparent objects through scattering media</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Scattering generally worsens the condition of inverse problems, with the severity depending on the statistics of the refractive index gradient and contrast. Removing scattering artifacts from images has attracted much work in the literature, including recently the use of static neural networks. S. Li et al. [Optica5(7), 803 (2018)10.1364/OPTICA.5.000803] trained a convolutional neural network to reveal amplitude objects hidden by a specific diffuser; whereas Y. Li et al. [Optica5(10), 1181 (2018)10.1364/OPTICA.5.001181] were able to deal with arbitrary diffusers, as long as certain statistical criteria were met. Here, we propose a novel dynamical machine learning approach for the case of imaging phase objects through arbitrary diffusers. The motivation is to strengthen the correlation among the patterns during the training and to reveal phase objects through scattering media. We utilize the on-axis rotation of a diffuser to impart dynamics and utilize multiple speckle measurements from different angles to form a sequence of images for training. Recurrent neural networks (RNN) embedded with the dynamics filter out useful information and discard the redundancies, thus quantitative phase information in presence of strong scattering. In other words, the RNN effectively averages out the effect of the dynamic random scattering media and learns more about the static pattern. The dynamical approach reveals transparent images behind the scattering media out of speckle correlation among adjacent measurements in a sequence. This method is also applicable to other imaging applications that involve any other spatiotemporal dynamics.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPwzAQhC0EoqVw4A-gHOGQsn4kto-oKg-pqBKCc-Q42zYlTYrtgPj3GFoQp1mtvh3NDiHnFMaU5-J6Ph0LypSGAzKkoEUqQMnDf_OAnHi_BqBCanlMBpxLloOEIXl8Qts7h21IWuydaaKEj869Jg7f0TQ-Cc60fmt-kK5cow1xt3Jdv1wl3poQ0NXtMtlgVZtTcrSIN3i21xF5uZ0-T-7T2fzuYXIzSy1nEFIdw8bcqJnQwHhpS2nzrKRSVQKlUIJyY6lRrKJAURuu1SKzytjSstzKio_I5c5367q3Hn0oNrW32DSmxa73BcuAMchAqohe7VDrOu8dLoqtqzfGfRYUiu_2ivm02LUX2Yu9bV_Gf_7I37r4F94-ajI</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Kang, Iksung</creator><creator>Pang, Subeen</creator><creator>Zhang, Qihang</creator><creator>Fang, Nicholas</creator><creator>Barbastathis, George</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4009-6743</orcidid></search><sort><creationdate>20210215</creationdate><title>Recurrent neural network reveals transparent objects through scattering media</title><author>Kang, Iksung ; Pang, Subeen ; Zhang, Qihang ; Fang, Nicholas ; Barbastathis, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-9128364e9249023bcb7c65b178d4e748413ac1a82d101e9a398f5c8acbc26c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Iksung</creatorcontrib><creatorcontrib>Pang, Subeen</creatorcontrib><creatorcontrib>Zhang, Qihang</creatorcontrib><creatorcontrib>Fang, Nicholas</creatorcontrib><creatorcontrib>Barbastathis, George</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Iksung</au><au>Pang, Subeen</au><au>Zhang, Qihang</au><au>Fang, Nicholas</au><au>Barbastathis, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recurrent neural network reveals transparent objects through scattering media</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2021-02-15</date><risdate>2021</risdate><volume>29</volume><issue>4</issue><spage>5316</spage><epage>5326</epage><pages>5316-5326</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Scattering generally worsens the condition of inverse problems, with the severity depending on the statistics of the refractive index gradient and contrast. Removing scattering artifacts from images has attracted much work in the literature, including recently the use of static neural networks. S. Li et al. [Optica5(7), 803 (2018)10.1364/OPTICA.5.000803] trained a convolutional neural network to reveal amplitude objects hidden by a specific diffuser; whereas Y. Li et al. [Optica5(10), 1181 (2018)10.1364/OPTICA.5.001181] were able to deal with arbitrary diffusers, as long as certain statistical criteria were met. Here, we propose a novel dynamical machine learning approach for the case of imaging phase objects through arbitrary diffusers. The motivation is to strengthen the correlation among the patterns during the training and to reveal phase objects through scattering media. We utilize the on-axis rotation of a diffuser to impart dynamics and utilize multiple speckle measurements from different angles to form a sequence of images for training. Recurrent neural networks (RNN) embedded with the dynamics filter out useful information and discard the redundancies, thus quantitative phase information in presence of strong scattering. In other words, the RNN effectively averages out the effect of the dynamic random scattering media and learns more about the static pattern. The dynamical approach reveals transparent images behind the scattering media out of speckle correlation among adjacent measurements in a sequence. This method is also applicable to other imaging applications that involve any other spatiotemporal dynamics.</abstract><cop>United States</cop><pmid>33726070</pmid><doi>10.1364/OE.412890</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4009-6743</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2021-02, Vol.29 (4), p.5316-5326
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2502205078
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Recurrent neural network reveals transparent objects through scattering media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A22%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recurrent%20neural%20network%20reveals%20transparent%20objects%20through%20scattering%20media&rft.jtitle=Optics%20express&rft.au=Kang,%20Iksung&rft.date=2021-02-15&rft.volume=29&rft.issue=4&rft.spage=5316&rft.epage=5326&rft.pages=5316-5326&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.412890&rft_dat=%3Cproquest_cross%3E2502205078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502205078&rft_id=info:pmid/33726070&rfr_iscdi=true