Uncertainty quantification implementations in human hemodynamic flows

•It is found that more research needs to be done in bioengineering applications with respect to UQ•Carefully estimation and analysis of the input parameters uncertainty is of crucial importance for biomedical sciences.•Physiological UQ needs realistic probability distributions calibrated according t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine 2021-05, Vol.203, p.106021-106021, Article 106021
Hauptverfasser: Ninos, G., Bartzis, V., Merlemis, N., Sarris, I. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106021
container_issue
container_start_page 106021
container_title Computer methods and programs in biomedicine
container_volume 203
creator Ninos, G.
Bartzis, V.
Merlemis, N.
Sarris, I. E.
description •It is found that more research needs to be done in bioengineering applications with respect to UQ•Carefully estimation and analysis of the input parameters uncertainty is of crucial importance for biomedical sciences.•Physiological UQ needs realistic probability distributions calibrated according to specific clinical data•Limitations exist for UQ calibration, reduction of computational cost and increase numerical accuracy Human hemodynamic modeling is usually influenced by uncertainties occurring from a considerable unavailability of information linked to the boundary conditions and the physical properties used in the numerical models. Calculating the effect of these uncertainties on the numerical findings along the cardiovascular system is a demanding process due to the complexity of the morphology of the body and the area dynamics. To cope with all these difficulties, Uncertainty Quantification (UQ) methods seem to be an ideal tool. This study focuses on analyzing and summarizing some of the recent research efforts and directions of implementing UQ in human hemodynamic flows by analyzing 139 research papers. Initially, the suitability of applying this approach is analyzed and demonstrated. Then, an overview of the most significant research work in various fields of biomedical hemodynamic engineering is presented. Finally, it is attempted to identify any possible forthcoming directions for research and methodological progress of UQ in biomedical sciences. This review concludes that by finding the best statistical methods and parameters to represent the propagated uncertainties, while achieving a good interpretation of the interaction between input–output, is crucial for implementing UQ in biomedical sciences.
doi_str_mv 10.1016/j.cmpb.2021.106021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2501851443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260721000961</els_id><sourcerecordid>2501851443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-29c5a855055b32a40e359622c4654b95443fffc1bfe7474082b6d77981fc19413</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMobk7_AQ_So5fOJM2PFryIzB8w8OLOIU0TzGjaLkmV_fdmdnr0ko98PO8L3wPANYJLBBG72y6VG-olhhilBUvjBMxRyXHOKaOnYJ6gKscM8hm4CGELIcSUsnMwKwqOUQrMwWrTKe2jtF3cZ7tRdtEaq2S0fZdZN7Ta6S7-fENmu-xjdDK92vXNvpPOqsy0_Ve4BGdGtkFfHecCbJ5W748v-frt-fXxYZ2rgrKY40pRWVIKKa0LLAnUBa0YxoowSuqKElIYYxSqjeaEE1jimjWcVyVKy4qgYgFup97B97tRhyicDUq3rex0PwaBKUQlRaknoXhCle9D8NqIwVsn_V4gKA76xFYc9ImDPjHpS6GbY_9YO938RX59JeB-AnS68tNqL4KyOilsrNcqiqa3__V_A35OgDo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501851443</pqid></control><display><type>article</type><title>Uncertainty quantification implementations in human hemodynamic flows</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ninos, G. ; Bartzis, V. ; Merlemis, N. ; Sarris, I. E.</creator><creatorcontrib>Ninos, G. ; Bartzis, V. ; Merlemis, N. ; Sarris, I. E.</creatorcontrib><description>•It is found that more research needs to be done in bioengineering applications with respect to UQ•Carefully estimation and analysis of the input parameters uncertainty is of crucial importance for biomedical sciences.•Physiological UQ needs realistic probability distributions calibrated according to specific clinical data•Limitations exist for UQ calibration, reduction of computational cost and increase numerical accuracy Human hemodynamic modeling is usually influenced by uncertainties occurring from a considerable unavailability of information linked to the boundary conditions and the physical properties used in the numerical models. Calculating the effect of these uncertainties on the numerical findings along the cardiovascular system is a demanding process due to the complexity of the morphology of the body and the area dynamics. To cope with all these difficulties, Uncertainty Quantification (UQ) methods seem to be an ideal tool. This study focuses on analyzing and summarizing some of the recent research efforts and directions of implementing UQ in human hemodynamic flows by analyzing 139 research papers. Initially, the suitability of applying this approach is analyzed and demonstrated. Then, an overview of the most significant research work in various fields of biomedical hemodynamic engineering is presented. Finally, it is attempted to identify any possible forthcoming directions for research and methodological progress of UQ in biomedical sciences. This review concludes that by finding the best statistical methods and parameters to represent the propagated uncertainties, while achieving a good interpretation of the interaction between input–output, is crucial for implementing UQ in biomedical sciences.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2021.106021</identifier><identifier>PMID: 33721602</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Biomedical sciences ; Computational fluid dynamics ; Hemodynamic flows ; Hemodynamics ; Humans ; Models, Cardiovascular ; Polynomial chaos ; Uncertainty ; Uncertainty quantification</subject><ispartof>Computer methods and programs in biomedicine, 2021-05, Vol.203, p.106021-106021, Article 106021</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright © 2021 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-29c5a855055b32a40e359622c4654b95443fffc1bfe7474082b6d77981fc19413</citedby><cites>FETCH-LOGICAL-c356t-29c5a855055b32a40e359622c4654b95443fffc1bfe7474082b6d77981fc19413</cites><orcidid>0000-0002-7697-4202 ; 0000-0002-6542-0490 ; 0000-0002-0714-6892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169260721000961$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33721602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ninos, G.</creatorcontrib><creatorcontrib>Bartzis, V.</creatorcontrib><creatorcontrib>Merlemis, N.</creatorcontrib><creatorcontrib>Sarris, I. E.</creatorcontrib><title>Uncertainty quantification implementations in human hemodynamic flows</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>•It is found that more research needs to be done in bioengineering applications with respect to UQ•Carefully estimation and analysis of the input parameters uncertainty is of crucial importance for biomedical sciences.•Physiological UQ needs realistic probability distributions calibrated according to specific clinical data•Limitations exist for UQ calibration, reduction of computational cost and increase numerical accuracy Human hemodynamic modeling is usually influenced by uncertainties occurring from a considerable unavailability of information linked to the boundary conditions and the physical properties used in the numerical models. Calculating the effect of these uncertainties on the numerical findings along the cardiovascular system is a demanding process due to the complexity of the morphology of the body and the area dynamics. To cope with all these difficulties, Uncertainty Quantification (UQ) methods seem to be an ideal tool. This study focuses on analyzing and summarizing some of the recent research efforts and directions of implementing UQ in human hemodynamic flows by analyzing 139 research papers. Initially, the suitability of applying this approach is analyzed and demonstrated. Then, an overview of the most significant research work in various fields of biomedical hemodynamic engineering is presented. Finally, it is attempted to identify any possible forthcoming directions for research and methodological progress of UQ in biomedical sciences. This review concludes that by finding the best statistical methods and parameters to represent the propagated uncertainties, while achieving a good interpretation of the interaction between input–output, is crucial for implementing UQ in biomedical sciences.</description><subject>Biomedical sciences</subject><subject>Computational fluid dynamics</subject><subject>Hemodynamic flows</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Models, Cardiovascular</subject><subject>Polynomial chaos</subject><subject>Uncertainty</subject><subject>Uncertainty quantification</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM9LwzAYhoMobk7_AQ_So5fOJM2PFryIzB8w8OLOIU0TzGjaLkmV_fdmdnr0ko98PO8L3wPANYJLBBG72y6VG-olhhilBUvjBMxRyXHOKaOnYJ6gKscM8hm4CGELIcSUsnMwKwqOUQrMwWrTKe2jtF3cZ7tRdtEaq2S0fZdZN7Ta6S7-fENmu-xjdDK92vXNvpPOqsy0_Ve4BGdGtkFfHecCbJ5W748v-frt-fXxYZ2rgrKY40pRWVIKKa0LLAnUBa0YxoowSuqKElIYYxSqjeaEE1jimjWcVyVKy4qgYgFup97B97tRhyicDUq3rex0PwaBKUQlRaknoXhCle9D8NqIwVsn_V4gKA76xFYc9ImDPjHpS6GbY_9YO938RX59JeB-AnS68tNqL4KyOilsrNcqiqa3__V_A35OgDo</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Ninos, G.</creator><creator>Bartzis, V.</creator><creator>Merlemis, N.</creator><creator>Sarris, I. E.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7697-4202</orcidid><orcidid>https://orcid.org/0000-0002-6542-0490</orcidid><orcidid>https://orcid.org/0000-0002-0714-6892</orcidid></search><sort><creationdate>202105</creationdate><title>Uncertainty quantification implementations in human hemodynamic flows</title><author>Ninos, G. ; Bartzis, V. ; Merlemis, N. ; Sarris, I. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-29c5a855055b32a40e359622c4654b95443fffc1bfe7474082b6d77981fc19413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical sciences</topic><topic>Computational fluid dynamics</topic><topic>Hemodynamic flows</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Models, Cardiovascular</topic><topic>Polynomial chaos</topic><topic>Uncertainty</topic><topic>Uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ninos, G.</creatorcontrib><creatorcontrib>Bartzis, V.</creatorcontrib><creatorcontrib>Merlemis, N.</creatorcontrib><creatorcontrib>Sarris, I. E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ninos, G.</au><au>Bartzis, V.</au><au>Merlemis, N.</au><au>Sarris, I. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty quantification implementations in human hemodynamic flows</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2021-05</date><risdate>2021</risdate><volume>203</volume><spage>106021</spage><epage>106021</epage><pages>106021-106021</pages><artnum>106021</artnum><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>•It is found that more research needs to be done in bioengineering applications with respect to UQ•Carefully estimation and analysis of the input parameters uncertainty is of crucial importance for biomedical sciences.•Physiological UQ needs realistic probability distributions calibrated according to specific clinical data•Limitations exist for UQ calibration, reduction of computational cost and increase numerical accuracy Human hemodynamic modeling is usually influenced by uncertainties occurring from a considerable unavailability of information linked to the boundary conditions and the physical properties used in the numerical models. Calculating the effect of these uncertainties on the numerical findings along the cardiovascular system is a demanding process due to the complexity of the morphology of the body and the area dynamics. To cope with all these difficulties, Uncertainty Quantification (UQ) methods seem to be an ideal tool. This study focuses on analyzing and summarizing some of the recent research efforts and directions of implementing UQ in human hemodynamic flows by analyzing 139 research papers. Initially, the suitability of applying this approach is analyzed and demonstrated. Then, an overview of the most significant research work in various fields of biomedical hemodynamic engineering is presented. Finally, it is attempted to identify any possible forthcoming directions for research and methodological progress of UQ in biomedical sciences. This review concludes that by finding the best statistical methods and parameters to represent the propagated uncertainties, while achieving a good interpretation of the interaction between input–output, is crucial for implementing UQ in biomedical sciences.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>33721602</pmid><doi>10.1016/j.cmpb.2021.106021</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7697-4202</orcidid><orcidid>https://orcid.org/0000-0002-6542-0490</orcidid><orcidid>https://orcid.org/0000-0002-0714-6892</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0169-2607
ispartof Computer methods and programs in biomedicine, 2021-05, Vol.203, p.106021-106021, Article 106021
issn 0169-2607
1872-7565
language eng
recordid cdi_proquest_miscellaneous_2501851443
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biomedical sciences
Computational fluid dynamics
Hemodynamic flows
Hemodynamics
Humans
Models, Cardiovascular
Polynomial chaos
Uncertainty
Uncertainty quantification
title Uncertainty quantification implementations in human hemodynamic flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20quantification%20implementations%20in%20human%20hemodynamic%20flows&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Ninos,%20G.&rft.date=2021-05&rft.volume=203&rft.spage=106021&rft.epage=106021&rft.pages=106021-106021&rft.artnum=106021&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2021.106021&rft_dat=%3Cproquest_cross%3E2501851443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501851443&rft_id=info:pmid/33721602&rft_els_id=S0169260721000961&rfr_iscdi=true