Machine learning in Magnetic Resonance Imaging: Image reconstruction

•Machine learning reconstruction of MRI data is becoming increasingly popular in research.•Many methods exist to perform machine learning reconstruction of MRI data.•The limited availability of publicly available training data sets, restricts current development and comparison of existing methods.•T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica medica 2021-03, Vol.83, p.79-87
Hauptverfasser: Montalt-Tordera, Javier, Muthurangu, Vivek, Hauptmann, Andreas, Steeden, Jennifer Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue
container_start_page 79
container_title Physica medica
container_volume 83
creator Montalt-Tordera, Javier
Muthurangu, Vivek
Hauptmann, Andreas
Steeden, Jennifer Anne
description •Machine learning reconstruction of MRI data is becoming increasingly popular in research.•Many methods exist to perform machine learning reconstruction of MRI data.•The limited availability of publicly available training data sets, restricts current development and comparison of existing methods.•There is currently very limited clinical validation of MRI images reconstructed using machine learning. Magnetic Resonance Imaging (MRI) plays a vital role in diagnosis, management and monitoring of many diseases. However, it is an inherently slow imaging technique. Over the last 20 years, parallel imaging, temporal encoding and compressed sensing have enabled substantial speed-ups in the acquisition of MRI data, by accurately recovering missing lines of k-space data. However, clinical uptake of vastly accelerated acquisitions has been limited, in particular in compressed sensing, due to the time-consuming nature of the reconstructions and unnatural looking images. Following the success of machine learning in a wide range of imaging tasks, there has been a recent explosion in the use of machine learning in the field of MRI image reconstruction. A wide range of approaches have been proposed, which can be applied in k-space and/or image-space. Promising results have been demonstrated from a range of methods, enabling natural looking images and rapid computation. In this review article we summarize the current machine learning approaches used in MRI reconstruction, discuss their drawbacks, clinical applications, and current trends.
doi_str_mv 10.1016/j.ejmp.2021.02.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2501851434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1120179721001095</els_id><sourcerecordid>2501851434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-e1b7294161d63fe18780709ed684aa388f297d35487431743603c37118c567173</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoVqtfwIPs0cvWmWR3sytepP4rtAii4C2k2WlN6WZrshX89qa2ehRmmAfz5sH8GDtDGCBgcbkY0KJZDThwHACPBXvsCCXPUqzwbT9q5JCirGSPHYewABCc5_kh6wkhOUrAI3Y70ebdOkqWpL2zbp5Yl0z03FFnTfJMoXXaGUpGjZ7H7dWPoMSTaV3o_Np0tnUn7GCml4FOd7PPXu_vXoaP6fjpYTS8GacmA-hSwqnkVYYF1oWYEZayBAkV1UWZaS3KcsYrWYs8K2UmMHYBwgiJWJq8kChFn11sc1e-_VhT6FRjg6HlUjtq10HxHLDMMRNZtPKt1fg2BE8ztfK20f5LIagNPbVQG3pqQ08BjwXx6HyXv542VP-d_OKKhuutgeKXn5a8CsZS5FPbSKRTdWv_y_8GYUh97Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501851434</pqid></control><display><type>article</type><title>Machine learning in Magnetic Resonance Imaging: Image reconstruction</title><source>Elsevier ScienceDirect Journals</source><creator>Montalt-Tordera, Javier ; Muthurangu, Vivek ; Hauptmann, Andreas ; Steeden, Jennifer Anne</creator><creatorcontrib>Montalt-Tordera, Javier ; Muthurangu, Vivek ; Hauptmann, Andreas ; Steeden, Jennifer Anne</creatorcontrib><description>•Machine learning reconstruction of MRI data is becoming increasingly popular in research.•Many methods exist to perform machine learning reconstruction of MRI data.•The limited availability of publicly available training data sets, restricts current development and comparison of existing methods.•There is currently very limited clinical validation of MRI images reconstructed using machine learning. Magnetic Resonance Imaging (MRI) plays a vital role in diagnosis, management and monitoring of many diseases. However, it is an inherently slow imaging technique. Over the last 20 years, parallel imaging, temporal encoding and compressed sensing have enabled substantial speed-ups in the acquisition of MRI data, by accurately recovering missing lines of k-space data. However, clinical uptake of vastly accelerated acquisitions has been limited, in particular in compressed sensing, due to the time-consuming nature of the reconstructions and unnatural looking images. Following the success of machine learning in a wide range of imaging tasks, there has been a recent explosion in the use of machine learning in the field of MRI image reconstruction. A wide range of approaches have been proposed, which can be applied in k-space and/or image-space. Promising results have been demonstrated from a range of methods, enabling natural looking images and rapid computation. In this review article we summarize the current machine learning approaches used in MRI reconstruction, discuss their drawbacks, clinical applications, and current trends.</description><identifier>ISSN: 1120-1797</identifier><identifier>EISSN: 1724-191X</identifier><identifier>DOI: 10.1016/j.ejmp.2021.02.020</identifier><identifier>PMID: 33721701</identifier><language>eng</language><publisher>Italy: Elsevier Ltd</publisher><subject>Artificial intelligence ; Image reconstruction ; Machine learning ; Magnetic Resonance Imaging</subject><ispartof>Physica medica, 2021-03, Vol.83, p.79-87</ispartof><rights>2021 Associazione Italiana di Fisica Medica</rights><rights>Copyright © 2021 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-e1b7294161d63fe18780709ed684aa388f297d35487431743603c37118c567173</citedby><cites>FETCH-LOGICAL-c400t-e1b7294161d63fe18780709ed684aa388f297d35487431743603c37118c567173</cites><orcidid>0000-0003-1956-1409 ; 0000-0002-3756-8121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1120179721001095$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33721701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montalt-Tordera, Javier</creatorcontrib><creatorcontrib>Muthurangu, Vivek</creatorcontrib><creatorcontrib>Hauptmann, Andreas</creatorcontrib><creatorcontrib>Steeden, Jennifer Anne</creatorcontrib><title>Machine learning in Magnetic Resonance Imaging: Image reconstruction</title><title>Physica medica</title><addtitle>Phys Med</addtitle><description>•Machine learning reconstruction of MRI data is becoming increasingly popular in research.•Many methods exist to perform machine learning reconstruction of MRI data.•The limited availability of publicly available training data sets, restricts current development and comparison of existing methods.•There is currently very limited clinical validation of MRI images reconstructed using machine learning. Magnetic Resonance Imaging (MRI) plays a vital role in diagnosis, management and monitoring of many diseases. However, it is an inherently slow imaging technique. Over the last 20 years, parallel imaging, temporal encoding and compressed sensing have enabled substantial speed-ups in the acquisition of MRI data, by accurately recovering missing lines of k-space data. However, clinical uptake of vastly accelerated acquisitions has been limited, in particular in compressed sensing, due to the time-consuming nature of the reconstructions and unnatural looking images. Following the success of machine learning in a wide range of imaging tasks, there has been a recent explosion in the use of machine learning in the field of MRI image reconstruction. A wide range of approaches have been proposed, which can be applied in k-space and/or image-space. Promising results have been demonstrated from a range of methods, enabling natural looking images and rapid computation. In this review article we summarize the current machine learning approaches used in MRI reconstruction, discuss their drawbacks, clinical applications, and current trends.</description><subject>Artificial intelligence</subject><subject>Image reconstruction</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging</subject><issn>1120-1797</issn><issn>1724-191X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoVqtfwIPs0cvWmWR3sytepP4rtAii4C2k2WlN6WZrshX89qa2ehRmmAfz5sH8GDtDGCBgcbkY0KJZDThwHACPBXvsCCXPUqzwbT9q5JCirGSPHYewABCc5_kh6wkhOUrAI3Y70ebdOkqWpL2zbp5Yl0z03FFnTfJMoXXaGUpGjZ7H7dWPoMSTaV3o_Np0tnUn7GCml4FOd7PPXu_vXoaP6fjpYTS8GacmA-hSwqnkVYYF1oWYEZayBAkV1UWZaS3KcsYrWYs8K2UmMHYBwgiJWJq8kChFn11sc1e-_VhT6FRjg6HlUjtq10HxHLDMMRNZtPKt1fg2BE8ztfK20f5LIagNPbVQG3pqQ08BjwXx6HyXv542VP-d_OKKhuutgeKXn5a8CsZS5FPbSKRTdWv_y_8GYUh97Q</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Montalt-Tordera, Javier</creator><creator>Muthurangu, Vivek</creator><creator>Hauptmann, Andreas</creator><creator>Steeden, Jennifer Anne</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1956-1409</orcidid><orcidid>https://orcid.org/0000-0002-3756-8121</orcidid></search><sort><creationdate>20210301</creationdate><title>Machine learning in Magnetic Resonance Imaging: Image reconstruction</title><author>Montalt-Tordera, Javier ; Muthurangu, Vivek ; Hauptmann, Andreas ; Steeden, Jennifer Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-e1b7294161d63fe18780709ed684aa388f297d35487431743603c37118c567173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Image reconstruction</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montalt-Tordera, Javier</creatorcontrib><creatorcontrib>Muthurangu, Vivek</creatorcontrib><creatorcontrib>Hauptmann, Andreas</creatorcontrib><creatorcontrib>Steeden, Jennifer Anne</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physica medica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montalt-Tordera, Javier</au><au>Muthurangu, Vivek</au><au>Hauptmann, Andreas</au><au>Steeden, Jennifer Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning in Magnetic Resonance Imaging: Image reconstruction</atitle><jtitle>Physica medica</jtitle><addtitle>Phys Med</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>83</volume><spage>79</spage><epage>87</epage><pages>79-87</pages><issn>1120-1797</issn><eissn>1724-191X</eissn><abstract>•Machine learning reconstruction of MRI data is becoming increasingly popular in research.•Many methods exist to perform machine learning reconstruction of MRI data.•The limited availability of publicly available training data sets, restricts current development and comparison of existing methods.•There is currently very limited clinical validation of MRI images reconstructed using machine learning. Magnetic Resonance Imaging (MRI) plays a vital role in diagnosis, management and monitoring of many diseases. However, it is an inherently slow imaging technique. Over the last 20 years, parallel imaging, temporal encoding and compressed sensing have enabled substantial speed-ups in the acquisition of MRI data, by accurately recovering missing lines of k-space data. However, clinical uptake of vastly accelerated acquisitions has been limited, in particular in compressed sensing, due to the time-consuming nature of the reconstructions and unnatural looking images. Following the success of machine learning in a wide range of imaging tasks, there has been a recent explosion in the use of machine learning in the field of MRI image reconstruction. A wide range of approaches have been proposed, which can be applied in k-space and/or image-space. Promising results have been demonstrated from a range of methods, enabling natural looking images and rapid computation. In this review article we summarize the current machine learning approaches used in MRI reconstruction, discuss their drawbacks, clinical applications, and current trends.</abstract><cop>Italy</cop><pub>Elsevier Ltd</pub><pmid>33721701</pmid><doi>10.1016/j.ejmp.2021.02.020</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1956-1409</orcidid><orcidid>https://orcid.org/0000-0002-3756-8121</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1120-1797
ispartof Physica medica, 2021-03, Vol.83, p.79-87
issn 1120-1797
1724-191X
language eng
recordid cdi_proquest_miscellaneous_2501851434
source Elsevier ScienceDirect Journals
subjects Artificial intelligence
Image reconstruction
Machine learning
Magnetic Resonance Imaging
title Machine learning in Magnetic Resonance Imaging: Image reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20in%20Magnetic%20Resonance%20Imaging:%20Image%20reconstruction&rft.jtitle=Physica%20medica&rft.au=Montalt-Tordera,%20Javier&rft.date=2021-03-01&rft.volume=83&rft.spage=79&rft.epage=87&rft.pages=79-87&rft.issn=1120-1797&rft.eissn=1724-191X&rft_id=info:doi/10.1016/j.ejmp.2021.02.020&rft_dat=%3Cproquest_cross%3E2501851434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501851434&rft_id=info:pmid/33721701&rft_els_id=S1120179721001095&rfr_iscdi=true