Chemical weathering and progressing alteration as possible controlling factors for creeping landslides

Landslides can behave as dynamic processes, which emerge from the complex interplay of tectonics, erosion, weathering and gravitational influences, triggered by various hydrological, mineralogical, biological and geotechnical factors. Integral studies to assess the mechanisms underlying landslide in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2021-07, Vol.778, p.146300-146300, Article 146300
Hauptverfasser: Baldermann, Andre, Dietzel, Martin, Reinprecht, Volker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146300
container_issue
container_start_page 146300
container_title The Science of the total environment
container_volume 778
creator Baldermann, Andre
Dietzel, Martin
Reinprecht, Volker
description Landslides can behave as dynamic processes, which emerge from the complex interplay of tectonics, erosion, weathering and gravitational influences, triggered by various hydrological, mineralogical, biological and geotechnical factors. Integral studies to assess the mechanisms underlying landslide initiation and progression are mainly focussed on specific cases with high geohazard potential. The landslide near Stadtschlaining (Austria) represents a key study site to elucidate the impacts of pelitic sediment composition, weathering regime, alteration patterns and hydrochemistry on recurrent damage progression in the local infrastructure. Based on field work, soil-mechanical logging (Atterberg limits, undrained strength, friction angles), water chemistry (ICP-OES, IC, hydrochemical modeling), solid-phase characterization (XRD, XRF, SEM) and sorption experiments we establish a conceptual model for initiating and progressing of landslides: Infiltration of low mineralized meteoric water (EC: 50 wt% of clay minerals) create zones of mechanical and chemical weakness in the underground (~4–6 m below ground level), which are characterized by particle disintegration/delamination, slip bedding and deformations, and development of porous layers depicting water flow paths. Subsequent Na+ exchange for bivalent ions in the smectite interlayer delivered by percolating, highly mineralized water (EC: 1600–5100 μS/cm) is caused by de-icing salt and fertilizer applications during winter and late summer, and yield in i) decohesion and physical breakdown of the particle aggregates and ii) swelling of the clay matrix in early spring and autumn. These processes reduce the shear strength of the pelitic sediments, resulting in failure and initiation of landslides (deformation: ~500 mm within a month) and subsequent steady creeping motion (deformation: ~100 mm in 6 months). Customized engineered solutions to prevent landslides in this area are presented, which can be conveyed to analogous landslide-affected areas worldwide. [Display omitted] •Conceptual model for seasonal variation of landslide movement in pelitic sediments•Strata-bound mineral-fluid interface processes chemically weaken the slide masses.•Clay mineral neo-formation and ion exchange create preferred sliding planes.•Longitudinal drainage
doi_str_mv 10.1016/j.scitotenv.2021.146300
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2501848724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969721013681</els_id><sourcerecordid>2501848724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-e91d722e38e5413c04de236247a3d5bbe5d1c23f333831a907b9a8d14b3418ec3</originalsourceid><addsrcrecordid>eNqFkMFu2zAMhoViQ5tle4XNx12cipJiycciWLcBBXrpzoIs0YkCxUolpcXevnLT9TpeCBI_f5IfId-AroBCd71fZetLLDg9rRhlsALRcUovyAKU7FugrPtAFpQK1fZdL6_Ip5z3tIZUcEmuOJcMOiEWZNzs8OCtCc0zmrLD5KdtYybXHFPcJsz5tQ4Fkyk-To3JzTHW7hCwsXEqKYYwS0ZjS0y5GWNqbEI8zs1QjXLwDvNn8nE0IeOXt7wkf25_PGx-tXf3P39vbu5aK1RXWuzBScaQK1wL4JYKh4x3TEjD3XoYcO3AMj5yzhUH01M59EY5EAMXoNDyJfl-9q3nP54wF33w2WKol2A8Zc3WFJRQkokqlWepTfWhhKM-Jn8w6a8GqmfIeq_fIesZsj5DrpNf35achgO697l_VKvg5izA-uqTxzQb4WTR-YS2aBf9f5e8AJWdk_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501848724</pqid></control><display><type>article</type><title>Chemical weathering and progressing alteration as possible controlling factors for creeping landslides</title><source>Elsevier ScienceDirect Journals</source><creator>Baldermann, Andre ; Dietzel, Martin ; Reinprecht, Volker</creator><creatorcontrib>Baldermann, Andre ; Dietzel, Martin ; Reinprecht, Volker</creatorcontrib><description>Landslides can behave as dynamic processes, which emerge from the complex interplay of tectonics, erosion, weathering and gravitational influences, triggered by various hydrological, mineralogical, biological and geotechnical factors. Integral studies to assess the mechanisms underlying landslide initiation and progression are mainly focussed on specific cases with high geohazard potential. The landslide near Stadtschlaining (Austria) represents a key study site to elucidate the impacts of pelitic sediment composition, weathering regime, alteration patterns and hydrochemistry on recurrent damage progression in the local infrastructure. Based on field work, soil-mechanical logging (Atterberg limits, undrained strength, friction angles), water chemistry (ICP-OES, IC, hydrochemical modeling), solid-phase characterization (XRD, XRF, SEM) and sorption experiments we establish a conceptual model for initiating and progressing of landslides: Infiltration of low mineralized meteoric water (EC: &lt;200 μS/cm) in permeable limonitic gravels triggers chemical weathering of greenschist-derived detritus and promotes its transformation into kaolinite and smectite. The clayey strata (&gt;50 wt% of clay minerals) create zones of mechanical and chemical weakness in the underground (~4–6 m below ground level), which are characterized by particle disintegration/delamination, slip bedding and deformations, and development of porous layers depicting water flow paths. Subsequent Na+ exchange for bivalent ions in the smectite interlayer delivered by percolating, highly mineralized water (EC: 1600–5100 μS/cm) is caused by de-icing salt and fertilizer applications during winter and late summer, and yield in i) decohesion and physical breakdown of the particle aggregates and ii) swelling of the clay matrix in early spring and autumn. These processes reduce the shear strength of the pelitic sediments, resulting in failure and initiation of landslides (deformation: ~500 mm within a month) and subsequent steady creeping motion (deformation: ~100 mm in 6 months). Customized engineered solutions to prevent landslides in this area are presented, which can be conveyed to analogous landslide-affected areas worldwide. [Display omitted] •Conceptual model for seasonal variation of landslide movement in pelitic sediments•Strata-bound mineral-fluid interface processes chemically weaken the slide masses.•Clay mineral neo-formation and ion exchange create preferred sliding planes.•Longitudinal drainage system prevents from landslides.</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2021.146300</identifier><identifier>PMID: 33721644</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Chemical weathering ; Hydrochemistry ; Landslide ; Monitoring ; Pelitic sediments ; Soil chemistry</subject><ispartof>The Science of the total environment, 2021-07, Vol.778, p.146300-146300, Article 146300</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-e91d722e38e5413c04de236247a3d5bbe5d1c23f333831a907b9a8d14b3418ec3</citedby><cites>FETCH-LOGICAL-c486t-e91d722e38e5413c04de236247a3d5bbe5d1c23f333831a907b9a8d14b3418ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0048969721013681$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33721644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baldermann, Andre</creatorcontrib><creatorcontrib>Dietzel, Martin</creatorcontrib><creatorcontrib>Reinprecht, Volker</creatorcontrib><title>Chemical weathering and progressing alteration as possible controlling factors for creeping landslides</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>Landslides can behave as dynamic processes, which emerge from the complex interplay of tectonics, erosion, weathering and gravitational influences, triggered by various hydrological, mineralogical, biological and geotechnical factors. Integral studies to assess the mechanisms underlying landslide initiation and progression are mainly focussed on specific cases with high geohazard potential. The landslide near Stadtschlaining (Austria) represents a key study site to elucidate the impacts of pelitic sediment composition, weathering regime, alteration patterns and hydrochemistry on recurrent damage progression in the local infrastructure. Based on field work, soil-mechanical logging (Atterberg limits, undrained strength, friction angles), water chemistry (ICP-OES, IC, hydrochemical modeling), solid-phase characterization (XRD, XRF, SEM) and sorption experiments we establish a conceptual model for initiating and progressing of landslides: Infiltration of low mineralized meteoric water (EC: &lt;200 μS/cm) in permeable limonitic gravels triggers chemical weathering of greenschist-derived detritus and promotes its transformation into kaolinite and smectite. The clayey strata (&gt;50 wt% of clay minerals) create zones of mechanical and chemical weakness in the underground (~4–6 m below ground level), which are characterized by particle disintegration/delamination, slip bedding and deformations, and development of porous layers depicting water flow paths. Subsequent Na+ exchange for bivalent ions in the smectite interlayer delivered by percolating, highly mineralized water (EC: 1600–5100 μS/cm) is caused by de-icing salt and fertilizer applications during winter and late summer, and yield in i) decohesion and physical breakdown of the particle aggregates and ii) swelling of the clay matrix in early spring and autumn. These processes reduce the shear strength of the pelitic sediments, resulting in failure and initiation of landslides (deformation: ~500 mm within a month) and subsequent steady creeping motion (deformation: ~100 mm in 6 months). Customized engineered solutions to prevent landslides in this area are presented, which can be conveyed to analogous landslide-affected areas worldwide. [Display omitted] •Conceptual model for seasonal variation of landslide movement in pelitic sediments•Strata-bound mineral-fluid interface processes chemically weaken the slide masses.•Clay mineral neo-formation and ion exchange create preferred sliding planes.•Longitudinal drainage system prevents from landslides.</description><subject>Chemical weathering</subject><subject>Hydrochemistry</subject><subject>Landslide</subject><subject>Monitoring</subject><subject>Pelitic sediments</subject><subject>Soil chemistry</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu2zAMhoViQ5tle4XNx12cipJiycciWLcBBXrpzoIs0YkCxUolpcXevnLT9TpeCBI_f5IfId-AroBCd71fZetLLDg9rRhlsALRcUovyAKU7FugrPtAFpQK1fZdL6_Ip5z3tIZUcEmuOJcMOiEWZNzs8OCtCc0zmrLD5KdtYybXHFPcJsz5tQ4Fkyk-To3JzTHW7hCwsXEqKYYwS0ZjS0y5GWNqbEI8zs1QjXLwDvNn8nE0IeOXt7wkf25_PGx-tXf3P39vbu5aK1RXWuzBScaQK1wL4JYKh4x3TEjD3XoYcO3AMj5yzhUH01M59EY5EAMXoNDyJfl-9q3nP54wF33w2WKol2A8Zc3WFJRQkokqlWepTfWhhKM-Jn8w6a8GqmfIeq_fIesZsj5DrpNf35achgO697l_VKvg5izA-uqTxzQb4WTR-YS2aBf9f5e8AJWdk_Y</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Baldermann, Andre</creator><creator>Dietzel, Martin</creator><creator>Reinprecht, Volker</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210715</creationdate><title>Chemical weathering and progressing alteration as possible controlling factors for creeping landslides</title><author>Baldermann, Andre ; Dietzel, Martin ; Reinprecht, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-e91d722e38e5413c04de236247a3d5bbe5d1c23f333831a907b9a8d14b3418ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical weathering</topic><topic>Hydrochemistry</topic><topic>Landslide</topic><topic>Monitoring</topic><topic>Pelitic sediments</topic><topic>Soil chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baldermann, Andre</creatorcontrib><creatorcontrib>Dietzel, Martin</creatorcontrib><creatorcontrib>Reinprecht, Volker</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baldermann, Andre</au><au>Dietzel, Martin</au><au>Reinprecht, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical weathering and progressing alteration as possible controlling factors for creeping landslides</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2021-07-15</date><risdate>2021</risdate><volume>778</volume><spage>146300</spage><epage>146300</epage><pages>146300-146300</pages><artnum>146300</artnum><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>Landslides can behave as dynamic processes, which emerge from the complex interplay of tectonics, erosion, weathering and gravitational influences, triggered by various hydrological, mineralogical, biological and geotechnical factors. Integral studies to assess the mechanisms underlying landslide initiation and progression are mainly focussed on specific cases with high geohazard potential. The landslide near Stadtschlaining (Austria) represents a key study site to elucidate the impacts of pelitic sediment composition, weathering regime, alteration patterns and hydrochemistry on recurrent damage progression in the local infrastructure. Based on field work, soil-mechanical logging (Atterberg limits, undrained strength, friction angles), water chemistry (ICP-OES, IC, hydrochemical modeling), solid-phase characterization (XRD, XRF, SEM) and sorption experiments we establish a conceptual model for initiating and progressing of landslides: Infiltration of low mineralized meteoric water (EC: &lt;200 μS/cm) in permeable limonitic gravels triggers chemical weathering of greenschist-derived detritus and promotes its transformation into kaolinite and smectite. The clayey strata (&gt;50 wt% of clay minerals) create zones of mechanical and chemical weakness in the underground (~4–6 m below ground level), which are characterized by particle disintegration/delamination, slip bedding and deformations, and development of porous layers depicting water flow paths. Subsequent Na+ exchange for bivalent ions in the smectite interlayer delivered by percolating, highly mineralized water (EC: 1600–5100 μS/cm) is caused by de-icing salt and fertilizer applications during winter and late summer, and yield in i) decohesion and physical breakdown of the particle aggregates and ii) swelling of the clay matrix in early spring and autumn. These processes reduce the shear strength of the pelitic sediments, resulting in failure and initiation of landslides (deformation: ~500 mm within a month) and subsequent steady creeping motion (deformation: ~100 mm in 6 months). Customized engineered solutions to prevent landslides in this area are presented, which can be conveyed to analogous landslide-affected areas worldwide. [Display omitted] •Conceptual model for seasonal variation of landslide movement in pelitic sediments•Strata-bound mineral-fluid interface processes chemically weaken the slide masses.•Clay mineral neo-formation and ion exchange create preferred sliding planes.•Longitudinal drainage system prevents from landslides.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33721644</pmid><doi>10.1016/j.scitotenv.2021.146300</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2021-07, Vol.778, p.146300-146300, Article 146300
issn 0048-9697
1879-1026
language eng
recordid cdi_proquest_miscellaneous_2501848724
source Elsevier ScienceDirect Journals
subjects Chemical weathering
Hydrochemistry
Landslide
Monitoring
Pelitic sediments
Soil chemistry
title Chemical weathering and progressing alteration as possible controlling factors for creeping landslides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20weathering%20and%20progressing%20alteration%20as%20possible%20controlling%20factors%20for%20creeping%20landslides&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Baldermann,%20Andre&rft.date=2021-07-15&rft.volume=778&rft.spage=146300&rft.epage=146300&rft.pages=146300-146300&rft.artnum=146300&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2021.146300&rft_dat=%3Cproquest_cross%3E2501848724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501848724&rft_id=info:pmid/33721644&rft_els_id=S0048969721013681&rfr_iscdi=true