Cellular mitosis predicts vessel stability in a mechanochemical model of sprouting angiogenesis

Angiogenesis, the formation of new vessels, occurs in both developmental and pathological contexts. Prior research has investigated vessel formation to identify cellular phenotypes and dynamics associated with angiogenic disease. One major family of proteins involved in angiogenesis are the Rho GTPa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomechanics and modeling in mechanobiology 2021-06, Vol.20 (3), p.1195-1208
Hauptverfasser: Link, Patrick A., Heise, Rebecca L., Weinberg, Seth H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1208
container_issue 3
container_start_page 1195
container_title Biomechanics and modeling in mechanobiology
container_volume 20
creator Link, Patrick A.
Heise, Rebecca L.
Weinberg, Seth H.
description Angiogenesis, the formation of new vessels, occurs in both developmental and pathological contexts. Prior research has investigated vessel formation to identify cellular phenotypes and dynamics associated with angiogenic disease. One major family of proteins involved in angiogenesis are the Rho GTPases, which govern function related to cellular elongation, migration, and proliferation. Using a mechanochemical model coupling Rho GTPase activity and cellular and intercellular mechanics, we investigate the role of cellular mitosis on sprouting angiogenesis. Mitosis-GTPase synchronization was not a strong predictor of GTPase and thus vessel signaling instability, whereas the location of mitotic events was predicted to alter GTPase cycling instabilities. Our model predicts that middle stalk cells undergoing mitosis introduce irregular dynamics in GTPase cycling and may provide a source of aberrant angiogenesis. We also find that cellular and junctional tension exhibit spatial heterogeneity through the vessel, and that tension feedback, specifically in stalk cells, tends to increase the maximum forces generated in the vessel.
doi_str_mv 10.1007/s10237-021-01442-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2501474808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501474808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-8b99551796a06e40f5505a2bd8d28570b7d8dc7fadb9438ae9f02636ec0676da3</originalsourceid><addsrcrecordid>eNp9kU9v3CAQxVGVqkmTfoEeIqRcenE7gDH4UqlapX-kSLk0Z4TxeJfIhg3YkfLtw3bTTdpDxGFGmh8P5j1CPjL4zADUl8yAC1UBZxWwuuaVfkNOWMNUpdoajg69bI_J-5xvATgILd6RYyEUkwzYCTErHMdltIlOfo7ZZ7pN2Hs3Z3qPOeNI82w7P_r5gfpALZ3QbWyIboOTd3akU-wLFAeatykusw9rasPaxzUGLHJn5O1gx4wfnuopufl--Xv1s7q6_vFr9e2qcpKxudJd20rJVNtYaLCGQUqQlne97rmWCjpVOqcG23dtLbTFdgDeiAYdNKrprTglX_e626WbsHcY5mRHs01-sunBROvNv5PgN2Yd743mqhatLgKfngRSvFswz2by2RVzbMC4ZMNl8VjVGnboxX_obVxSKOsVSvB6d1ih-J5yKeaccDh8hoHZ5Wf2-ZmSn_mTn9lJn79c43Dlb2AFEHug2F28xvT89iuyj90Xp7Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532424241</pqid></control><display><type>article</type><title>Cellular mitosis predicts vessel stability in a mechanochemical model of sprouting angiogenesis</title><source>Springer Journals</source><creator>Link, Patrick A. ; Heise, Rebecca L. ; Weinberg, Seth H.</creator><creatorcontrib>Link, Patrick A. ; Heise, Rebecca L. ; Weinberg, Seth H.</creatorcontrib><description>Angiogenesis, the formation of new vessels, occurs in both developmental and pathological contexts. Prior research has investigated vessel formation to identify cellular phenotypes and dynamics associated with angiogenic disease. One major family of proteins involved in angiogenesis are the Rho GTPases, which govern function related to cellular elongation, migration, and proliferation. Using a mechanochemical model coupling Rho GTPase activity and cellular and intercellular mechanics, we investigate the role of cellular mitosis on sprouting angiogenesis. Mitosis-GTPase synchronization was not a strong predictor of GTPase and thus vessel signaling instability, whereas the location of mitotic events was predicted to alter GTPase cycling instabilities. Our model predicts that middle stalk cells undergoing mitosis introduce irregular dynamics in GTPase cycling and may provide a source of aberrant angiogenesis. We also find that cellular and junctional tension exhibit spatial heterogeneity through the vessel, and that tension feedback, specifically in stalk cells, tends to increase the maximum forces generated in the vessel.</description><identifier>ISSN: 1617-7959</identifier><identifier>EISSN: 1617-7940</identifier><identifier>DOI: 10.1007/s10237-021-01442-8</identifier><identifier>PMID: 33715101</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Angiogenesis ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Blood vessels ; Cycles ; Elongation ; Engineering ; Guanosine triphosphatases ; Heterogeneity ; Mitosis ; Original Paper ; Phenotypes ; Spatial heterogeneity ; Synchronism ; Synchronization ; Theoretical and Applied Mechanics</subject><ispartof>Biomechanics and modeling in mechanobiology, 2021-06, Vol.20 (3), p.1195-1208</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-8b99551796a06e40f5505a2bd8d28570b7d8dc7fadb9438ae9f02636ec0676da3</citedby><cites>FETCH-LOGICAL-c511t-8b99551796a06e40f5505a2bd8d28570b7d8dc7fadb9438ae9f02636ec0676da3</cites><orcidid>0000-0003-1170-0419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10237-021-01442-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10237-021-01442-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33715101$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Link, Patrick A.</creatorcontrib><creatorcontrib>Heise, Rebecca L.</creatorcontrib><creatorcontrib>Weinberg, Seth H.</creatorcontrib><title>Cellular mitosis predicts vessel stability in a mechanochemical model of sprouting angiogenesis</title><title>Biomechanics and modeling in mechanobiology</title><addtitle>Biomech Model Mechanobiol</addtitle><addtitle>Biomech Model Mechanobiol</addtitle><description>Angiogenesis, the formation of new vessels, occurs in both developmental and pathological contexts. Prior research has investigated vessel formation to identify cellular phenotypes and dynamics associated with angiogenic disease. One major family of proteins involved in angiogenesis are the Rho GTPases, which govern function related to cellular elongation, migration, and proliferation. Using a mechanochemical model coupling Rho GTPase activity and cellular and intercellular mechanics, we investigate the role of cellular mitosis on sprouting angiogenesis. Mitosis-GTPase synchronization was not a strong predictor of GTPase and thus vessel signaling instability, whereas the location of mitotic events was predicted to alter GTPase cycling instabilities. Our model predicts that middle stalk cells undergoing mitosis introduce irregular dynamics in GTPase cycling and may provide a source of aberrant angiogenesis. We also find that cellular and junctional tension exhibit spatial heterogeneity through the vessel, and that tension feedback, specifically in stalk cells, tends to increase the maximum forces generated in the vessel.</description><subject>Angiogenesis</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Blood vessels</subject><subject>Cycles</subject><subject>Elongation</subject><subject>Engineering</subject><subject>Guanosine triphosphatases</subject><subject>Heterogeneity</subject><subject>Mitosis</subject><subject>Original Paper</subject><subject>Phenotypes</subject><subject>Spatial heterogeneity</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Theoretical and Applied Mechanics</subject><issn>1617-7959</issn><issn>1617-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9v3CAQxVGVqkmTfoEeIqRcenE7gDH4UqlapX-kSLk0Z4TxeJfIhg3YkfLtw3bTTdpDxGFGmh8P5j1CPjL4zADUl8yAC1UBZxWwuuaVfkNOWMNUpdoajg69bI_J-5xvATgILd6RYyEUkwzYCTErHMdltIlOfo7ZZ7pN2Hs3Z3qPOeNI82w7P_r5gfpALZ3QbWyIboOTd3akU-wLFAeatykusw9rasPaxzUGLHJn5O1gx4wfnuopufl--Xv1s7q6_vFr9e2qcpKxudJd20rJVNtYaLCGQUqQlne97rmWCjpVOqcG23dtLbTFdgDeiAYdNKrprTglX_e626WbsHcY5mRHs01-sunBROvNv5PgN2Yd743mqhatLgKfngRSvFswz2by2RVzbMC4ZMNl8VjVGnboxX_obVxSKOsVSvB6d1ih-J5yKeaccDh8hoHZ5Wf2-ZmSn_mTn9lJn79c43Dlb2AFEHug2F28xvT89iuyj90Xp7Y</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Link, Patrick A.</creator><creator>Heise, Rebecca L.</creator><creator>Weinberg, Seth H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TB</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1170-0419</orcidid></search><sort><creationdate>20210601</creationdate><title>Cellular mitosis predicts vessel stability in a mechanochemical model of sprouting angiogenesis</title><author>Link, Patrick A. ; Heise, Rebecca L. ; Weinberg, Seth H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-8b99551796a06e40f5505a2bd8d28570b7d8dc7fadb9438ae9f02636ec0676da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angiogenesis</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Blood vessels</topic><topic>Cycles</topic><topic>Elongation</topic><topic>Engineering</topic><topic>Guanosine triphosphatases</topic><topic>Heterogeneity</topic><topic>Mitosis</topic><topic>Original Paper</topic><topic>Phenotypes</topic><topic>Spatial heterogeneity</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Link, Patrick A.</creatorcontrib><creatorcontrib>Heise, Rebecca L.</creatorcontrib><creatorcontrib>Weinberg, Seth H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomechanics and modeling in mechanobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Link, Patrick A.</au><au>Heise, Rebecca L.</au><au>Weinberg, Seth H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular mitosis predicts vessel stability in a mechanochemical model of sprouting angiogenesis</atitle><jtitle>Biomechanics and modeling in mechanobiology</jtitle><stitle>Biomech Model Mechanobiol</stitle><addtitle>Biomech Model Mechanobiol</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>20</volume><issue>3</issue><spage>1195</spage><epage>1208</epage><pages>1195-1208</pages><issn>1617-7959</issn><eissn>1617-7940</eissn><abstract>Angiogenesis, the formation of new vessels, occurs in both developmental and pathological contexts. Prior research has investigated vessel formation to identify cellular phenotypes and dynamics associated with angiogenic disease. One major family of proteins involved in angiogenesis are the Rho GTPases, which govern function related to cellular elongation, migration, and proliferation. Using a mechanochemical model coupling Rho GTPase activity and cellular and intercellular mechanics, we investigate the role of cellular mitosis on sprouting angiogenesis. Mitosis-GTPase synchronization was not a strong predictor of GTPase and thus vessel signaling instability, whereas the location of mitotic events was predicted to alter GTPase cycling instabilities. Our model predicts that middle stalk cells undergoing mitosis introduce irregular dynamics in GTPase cycling and may provide a source of aberrant angiogenesis. We also find that cellular and junctional tension exhibit spatial heterogeneity through the vessel, and that tension feedback, specifically in stalk cells, tends to increase the maximum forces generated in the vessel.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33715101</pmid><doi>10.1007/s10237-021-01442-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1170-0419</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-7959
ispartof Biomechanics and modeling in mechanobiology, 2021-06, Vol.20 (3), p.1195-1208
issn 1617-7959
1617-7940
language eng
recordid cdi_proquest_miscellaneous_2501474808
source Springer Journals
subjects Angiogenesis
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Blood vessels
Cycles
Elongation
Engineering
Guanosine triphosphatases
Heterogeneity
Mitosis
Original Paper
Phenotypes
Spatial heterogeneity
Synchronism
Synchronization
Theoretical and Applied Mechanics
title Cellular mitosis predicts vessel stability in a mechanochemical model of sprouting angiogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20mitosis%20predicts%20vessel%20stability%20in%20a%20mechanochemical%20model%20of%20sprouting%20angiogenesis&rft.jtitle=Biomechanics%20and%20modeling%20in%20mechanobiology&rft.au=Link,%20Patrick%20A.&rft.date=2021-06-01&rft.volume=20&rft.issue=3&rft.spage=1195&rft.epage=1208&rft.pages=1195-1208&rft.issn=1617-7959&rft.eissn=1617-7940&rft_id=info:doi/10.1007/s10237-021-01442-8&rft_dat=%3Cproquest_pubme%3E2501474808%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532424241&rft_id=info:pmid/33715101&rfr_iscdi=true