Linking 7-Nitrobenzo-2-oxa-1,3-diazole (NBD) to Triphenylphosphonium Yields Mitochondria-Targeted Protonophore and Antibacterial Agent
Appending lipophilic cations to small molecules has been widely used to produce mitochondria-targeted compounds with specific activities. In this work, we obtained a series of derivatives of the well-known fluorescent dye 7-nitrobenzo-2-oxa-1,3-diazole (NBD). According to the previous data [Denisov...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Moscow) 2020-12, Vol.85 (12-13), p.1578-1590 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1590 |
---|---|
container_issue | 12-13 |
container_start_page | 1578 |
container_title | Biochemistry (Moscow) |
container_volume | 85 |
creator | Iaubasarova, I. R. Khailova, L. S. Nazarov, P. A. Rokitskaya, T. I. Silachev, D. N. Danilina, T. I. Plotnikov, E. Y. Denisov, S. S. Kirsanov, R. S. Korshunova, G. A. Kotova, E. A. Zorov, D. B. Antonenko, Y. N. |
description | Appending lipophilic cations to small molecules has been widely used to produce mitochondria-targeted compounds with specific activities. In this work, we obtained a series of derivatives of the well-known fluorescent dye 7-nitrobenzo-2-oxa-1,3-diazole (NBD). According to the previous data [Denisov et al. (2014)
Bioelectrochemistry
,
98
, 30-38], alkyl derivatives of NBD can uncouple isolated mitochondria at concentration of tens of micromoles despite a high pK
a
value (~11) of the dissociating group. Here, a number of triphenylphosphonium (TPP) derivatives linked to NBD via hydrocarbon spacers of varying length (C5, C8, C10, and C12) were synthesized (mitoNBD analogues), which accumulated in the mitochondria in an energy-dependent manner. NBD-C10-TPP (C10-mitoNBD) acted as a protonophore in artificial lipid membranes (liposomes) and uncoupled isolated mitochondria at micromolar concentrations, while the derivative with a shorter linker (NBD-C5-TPP, or C5-mitoNBD) exhibited no such activities. In accordance with this data, C10-mitoNBD was significantly more efficient than C5-mitoNBD in suppressing the growth of
Bacillus subtilis
. C10-mitoNBD and C12-mitoNBD demonstrated the highest antibacterial activity among the investigated analogues. C10-mitoNBD also exhibited the neuroprotective effect in the rat model of traumatic brain injury. |
doi_str_mv | 10.1134/S000629792012010X |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2501261282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651137982</galeid><sourcerecordid>A651137982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-f9a2595dbfeb8c989084188153f1c83e88f24837dcbc7aa144e7ad5422753d33</originalsourceid><addsrcrecordid>eNp1kVtvFCEYhonR2LX6A7wxJN7URCqHOcDlWo_JWk3cC72aMPDNlDoLW2AS2x_g75Z1q42nACHwPe-bD16EHjJ6zJionn2klDZctYpTVib9dAstWEMlEbSit9FiVya7-gG6l9J5OXKqxF10IERLa66aBfq2cv6L8yNuyanLMfTgrwLhJHzVhD0VxDp9FSbAR6fPXzzBOeB1dNsz8JfT9iyksrybN_izg8km_M7lYMqVjU6TtY4jZLD4Qww5-FDYCFh7i5c-u16bDAWb8HIEn--jO4OeEjy43g_R-tXL9ckbsnr_-u3JckVMJVQmg9K8VrXtB-ilUVJRWTEpWS0GZqQAKQdeSdFa05tWa1ZV0GpbV5y3tbBCHKKjve02hosZUu42LhmYJu0hzKnjdfnIhnHJC_r4D_Q8zNGX5jpetUJQ3gh6Q416gs75IeSozc60WzZ1CalVP7yO_0GVYWHjTPAwuHL_m4DtBSaGlCIM3Ta6jY6XHaPdLvrur-iL5tF1w3O_AftL8TPrAvA9kErJjxBvXvR_1-_kb7Y-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473302630</pqid></control><display><type>article</type><title>Linking 7-Nitrobenzo-2-oxa-1,3-diazole (NBD) to Triphenylphosphonium Yields Mitochondria-Targeted Protonophore and Antibacterial Agent</title><source>SpringerLink Journals - AutoHoldings</source><creator>Iaubasarova, I. R. ; Khailova, L. S. ; Nazarov, P. A. ; Rokitskaya, T. I. ; Silachev, D. N. ; Danilina, T. I. ; Plotnikov, E. Y. ; Denisov, S. S. ; Kirsanov, R. S. ; Korshunova, G. A. ; Kotova, E. A. ; Zorov, D. B. ; Antonenko, Y. N.</creator><creatorcontrib>Iaubasarova, I. R. ; Khailova, L. S. ; Nazarov, P. A. ; Rokitskaya, T. I. ; Silachev, D. N. ; Danilina, T. I. ; Plotnikov, E. Y. ; Denisov, S. S. ; Kirsanov, R. S. ; Korshunova, G. A. ; Kotova, E. A. ; Zorov, D. B. ; Antonenko, Y. N.</creatorcontrib><description>Appending lipophilic cations to small molecules has been widely used to produce mitochondria-targeted compounds with specific activities. In this work, we obtained a series of derivatives of the well-known fluorescent dye 7-nitrobenzo-2-oxa-1,3-diazole (NBD). According to the previous data [Denisov et al. (2014)
Bioelectrochemistry
,
98
, 30-38], alkyl derivatives of NBD can uncouple isolated mitochondria at concentration of tens of micromoles despite a high pK
a
value (~11) of the dissociating group. Here, a number of triphenylphosphonium (TPP) derivatives linked to NBD via hydrocarbon spacers of varying length (C5, C8, C10, and C12) were synthesized (mitoNBD analogues), which accumulated in the mitochondria in an energy-dependent manner. NBD-C10-TPP (C10-mitoNBD) acted as a protonophore in artificial lipid membranes (liposomes) and uncoupled isolated mitochondria at micromolar concentrations, while the derivative with a shorter linker (NBD-C5-TPP, or C5-mitoNBD) exhibited no such activities. In accordance with this data, C10-mitoNBD was significantly more efficient than C5-mitoNBD in suppressing the growth of
Bacillus subtilis
. C10-mitoNBD and C12-mitoNBD demonstrated the highest antibacterial activity among the investigated analogues. C10-mitoNBD also exhibited the neuroprotective effect in the rat model of traumatic brain injury.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S000629792012010X</identifier><identifier>PMID: 33705296</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Antibacterial activity ; Antibacterial agents ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Brain ; Cations ; Derivatives ; Fluorescent dyes ; Fluorescent indicators ; Head injuries ; Injuries ; Life Sciences ; Lipid membranes ; Lipids ; Lipophilic ; Liposomes ; Microbiology ; Mitochondria ; Neuroprotection ; Oxalic acid ; Traumatic brain injury</subject><ispartof>Biochemistry (Moscow), 2020-12, Vol.85 (12-13), p.1578-1590</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-f9a2595dbfeb8c989084188153f1c83e88f24837dcbc7aa144e7ad5422753d33</citedby><cites>FETCH-LOGICAL-c439t-f9a2595dbfeb8c989084188153f1c83e88f24837dcbc7aa144e7ad5422753d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S000629792012010X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S000629792012010X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33705296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iaubasarova, I. R.</creatorcontrib><creatorcontrib>Khailova, L. S.</creatorcontrib><creatorcontrib>Nazarov, P. A.</creatorcontrib><creatorcontrib>Rokitskaya, T. I.</creatorcontrib><creatorcontrib>Silachev, D. N.</creatorcontrib><creatorcontrib>Danilina, T. I.</creatorcontrib><creatorcontrib>Plotnikov, E. Y.</creatorcontrib><creatorcontrib>Denisov, S. S.</creatorcontrib><creatorcontrib>Kirsanov, R. S.</creatorcontrib><creatorcontrib>Korshunova, G. A.</creatorcontrib><creatorcontrib>Kotova, E. A.</creatorcontrib><creatorcontrib>Zorov, D. B.</creatorcontrib><creatorcontrib>Antonenko, Y. N.</creatorcontrib><title>Linking 7-Nitrobenzo-2-oxa-1,3-diazole (NBD) to Triphenylphosphonium Yields Mitochondria-Targeted Protonophore and Antibacterial Agent</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><addtitle>Biochemistry (Mosc)</addtitle><description>Appending lipophilic cations to small molecules has been widely used to produce mitochondria-targeted compounds with specific activities. In this work, we obtained a series of derivatives of the well-known fluorescent dye 7-nitrobenzo-2-oxa-1,3-diazole (NBD). According to the previous data [Denisov et al. (2014)
Bioelectrochemistry
,
98
, 30-38], alkyl derivatives of NBD can uncouple isolated mitochondria at concentration of tens of micromoles despite a high pK
a
value (~11) of the dissociating group. Here, a number of triphenylphosphonium (TPP) derivatives linked to NBD via hydrocarbon spacers of varying length (C5, C8, C10, and C12) were synthesized (mitoNBD analogues), which accumulated in the mitochondria in an energy-dependent manner. NBD-C10-TPP (C10-mitoNBD) acted as a protonophore in artificial lipid membranes (liposomes) and uncoupled isolated mitochondria at micromolar concentrations, while the derivative with a shorter linker (NBD-C5-TPP, or C5-mitoNBD) exhibited no such activities. In accordance with this data, C10-mitoNBD was significantly more efficient than C5-mitoNBD in suppressing the growth of
Bacillus subtilis
. C10-mitoNBD and C12-mitoNBD demonstrated the highest antibacterial activity among the investigated analogues. C10-mitoNBD also exhibited the neuroprotective effect in the rat model of traumatic brain injury.</description><subject>Antibacterial activity</subject><subject>Antibacterial agents</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Brain</subject><subject>Cations</subject><subject>Derivatives</subject><subject>Fluorescent dyes</subject><subject>Fluorescent indicators</subject><subject>Head injuries</subject><subject>Injuries</subject><subject>Life Sciences</subject><subject>Lipid membranes</subject><subject>Lipids</subject><subject>Lipophilic</subject><subject>Liposomes</subject><subject>Microbiology</subject><subject>Mitochondria</subject><subject>Neuroprotection</subject><subject>Oxalic acid</subject><subject>Traumatic brain injury</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kVtvFCEYhonR2LX6A7wxJN7URCqHOcDlWo_JWk3cC72aMPDNlDoLW2AS2x_g75Z1q42nACHwPe-bD16EHjJ6zJionn2klDZctYpTVib9dAstWEMlEbSit9FiVya7-gG6l9J5OXKqxF10IERLa66aBfq2cv6L8yNuyanLMfTgrwLhJHzVhD0VxDp9FSbAR6fPXzzBOeB1dNsz8JfT9iyksrybN_izg8km_M7lYMqVjU6TtY4jZLD4Qww5-FDYCFh7i5c-u16bDAWb8HIEn--jO4OeEjy43g_R-tXL9ckbsnr_-u3JckVMJVQmg9K8VrXtB-ilUVJRWTEpWS0GZqQAKQdeSdFa05tWa1ZV0GpbV5y3tbBCHKKjve02hosZUu42LhmYJu0hzKnjdfnIhnHJC_r4D_Q8zNGX5jpetUJQ3gh6Q416gs75IeSozc60WzZ1CalVP7yO_0GVYWHjTPAwuHL_m4DtBSaGlCIM3Ta6jY6XHaPdLvrur-iL5tF1w3O_AftL8TPrAvA9kErJjxBvXvR_1-_kb7Y-</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Iaubasarova, I. R.</creator><creator>Khailova, L. S.</creator><creator>Nazarov, P. A.</creator><creator>Rokitskaya, T. I.</creator><creator>Silachev, D. N.</creator><creator>Danilina, T. I.</creator><creator>Plotnikov, E. Y.</creator><creator>Denisov, S. S.</creator><creator>Kirsanov, R. S.</creator><creator>Korshunova, G. A.</creator><creator>Kotova, E. A.</creator><creator>Zorov, D. B.</creator><creator>Antonenko, Y. N.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20201201</creationdate><title>Linking 7-Nitrobenzo-2-oxa-1,3-diazole (NBD) to Triphenylphosphonium Yields Mitochondria-Targeted Protonophore and Antibacterial Agent</title><author>Iaubasarova, I. R. ; Khailova, L. S. ; Nazarov, P. A. ; Rokitskaya, T. I. ; Silachev, D. N. ; Danilina, T. I. ; Plotnikov, E. Y. ; Denisov, S. S. ; Kirsanov, R. S. ; Korshunova, G. A. ; Kotova, E. A. ; Zorov, D. B. ; Antonenko, Y. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-f9a2595dbfeb8c989084188153f1c83e88f24837dcbc7aa144e7ad5422753d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antibacterial activity</topic><topic>Antibacterial agents</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Brain</topic><topic>Cations</topic><topic>Derivatives</topic><topic>Fluorescent dyes</topic><topic>Fluorescent indicators</topic><topic>Head injuries</topic><topic>Injuries</topic><topic>Life Sciences</topic><topic>Lipid membranes</topic><topic>Lipids</topic><topic>Lipophilic</topic><topic>Liposomes</topic><topic>Microbiology</topic><topic>Mitochondria</topic><topic>Neuroprotection</topic><topic>Oxalic acid</topic><topic>Traumatic brain injury</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iaubasarova, I. R.</creatorcontrib><creatorcontrib>Khailova, L. S.</creatorcontrib><creatorcontrib>Nazarov, P. A.</creatorcontrib><creatorcontrib>Rokitskaya, T. I.</creatorcontrib><creatorcontrib>Silachev, D. N.</creatorcontrib><creatorcontrib>Danilina, T. I.</creatorcontrib><creatorcontrib>Plotnikov, E. Y.</creatorcontrib><creatorcontrib>Denisov, S. S.</creatorcontrib><creatorcontrib>Kirsanov, R. S.</creatorcontrib><creatorcontrib>Korshunova, G. A.</creatorcontrib><creatorcontrib>Kotova, E. A.</creatorcontrib><creatorcontrib>Zorov, D. B.</creatorcontrib><creatorcontrib>Antonenko, Y. N.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iaubasarova, I. R.</au><au>Khailova, L. S.</au><au>Nazarov, P. A.</au><au>Rokitskaya, T. I.</au><au>Silachev, D. N.</au><au>Danilina, T. I.</au><au>Plotnikov, E. Y.</au><au>Denisov, S. S.</au><au>Kirsanov, R. S.</au><au>Korshunova, G. A.</au><au>Kotova, E. A.</au><au>Zorov, D. B.</au><au>Antonenko, Y. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking 7-Nitrobenzo-2-oxa-1,3-diazole (NBD) to Triphenylphosphonium Yields Mitochondria-Targeted Protonophore and Antibacterial Agent</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><addtitle>Biochemistry (Mosc)</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>85</volume><issue>12-13</issue><spage>1578</spage><epage>1590</epage><pages>1578-1590</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>Appending lipophilic cations to small molecules has been widely used to produce mitochondria-targeted compounds with specific activities. In this work, we obtained a series of derivatives of the well-known fluorescent dye 7-nitrobenzo-2-oxa-1,3-diazole (NBD). According to the previous data [Denisov et al. (2014)
Bioelectrochemistry
,
98
, 30-38], alkyl derivatives of NBD can uncouple isolated mitochondria at concentration of tens of micromoles despite a high pK
a
value (~11) of the dissociating group. Here, a number of triphenylphosphonium (TPP) derivatives linked to NBD via hydrocarbon spacers of varying length (C5, C8, C10, and C12) were synthesized (mitoNBD analogues), which accumulated in the mitochondria in an energy-dependent manner. NBD-C10-TPP (C10-mitoNBD) acted as a protonophore in artificial lipid membranes (liposomes) and uncoupled isolated mitochondria at micromolar concentrations, while the derivative with a shorter linker (NBD-C5-TPP, or C5-mitoNBD) exhibited no such activities. In accordance with this data, C10-mitoNBD was significantly more efficient than C5-mitoNBD in suppressing the growth of
Bacillus subtilis
. C10-mitoNBD and C12-mitoNBD demonstrated the highest antibacterial activity among the investigated analogues. C10-mitoNBD also exhibited the neuroprotective effect in the rat model of traumatic brain injury.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><pmid>33705296</pmid><doi>10.1134/S000629792012010X</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2979 |
ispartof | Biochemistry (Moscow), 2020-12, Vol.85 (12-13), p.1578-1590 |
issn | 0006-2979 1608-3040 |
language | eng |
recordid | cdi_proquest_miscellaneous_2501261282 |
source | SpringerLink Journals - AutoHoldings |
subjects | Antibacterial activity Antibacterial agents Biochemistry Biomedical and Life Sciences Biomedicine Bioorganic Chemistry Brain Cations Derivatives Fluorescent dyes Fluorescent indicators Head injuries Injuries Life Sciences Lipid membranes Lipids Lipophilic Liposomes Microbiology Mitochondria Neuroprotection Oxalic acid Traumatic brain injury |
title | Linking 7-Nitrobenzo-2-oxa-1,3-diazole (NBD) to Triphenylphosphonium Yields Mitochondria-Targeted Protonophore and Antibacterial Agent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%207-Nitrobenzo-2-oxa-1,3-diazole%20(NBD)%20to%20Triphenylphosphonium%20Yields%20Mitochondria-Targeted%20Protonophore%20and%20Antibacterial%20Agent&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Iaubasarova,%20I.%20R.&rft.date=2020-12-01&rft.volume=85&rft.issue=12-13&rft.spage=1578&rft.epage=1590&rft.pages=1578-1590&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S000629792012010X&rft_dat=%3Cgale_proqu%3EA651137982%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473302630&rft_id=info:pmid/33705296&rft_galeid=A651137982&rfr_iscdi=true |