Superfluid transport and its applications in space

Various transport modes in superfluid helium are discussed in this paper. They include zero net mass flow (ZNMF) and finite mass flow (FMF) for pure superfluid and normal fluid flow. An attempt is made to characterize these transport modes in a common frame of reference. Two dimensionless numbers ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryogenics (Guildford) 1990-03, Vol.30 (3), p.222-229
Hauptverfasser: Yuan, S.W.K., Lee, J.M., Caspi, S., Soloski, S.C., Vote, F.C., Maddox, J.P., Amar, R.C., Linnet, C., Kamioka, Y., Kim, Y.I., Chen, W.E.W., Schweikle, J.D., Hepler, W.A., Khandhar, P, Carandang, R., Lee, J.Y., Kamegawa, M., Chuang, T., Chang, Y.W., Chapman, R.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 229
container_issue 3
container_start_page 222
container_title Cryogenics (Guildford)
container_volume 30
creator Yuan, S.W.K.
Lee, J.M.
Caspi, S.
Soloski, S.C.
Vote, F.C.
Maddox, J.P.
Amar, R.C.
Linnet, C.
Kamioka, Y.
Kim, Y.I.
Chen, W.E.W.
Schweikle, J.D.
Hepler, W.A.
Khandhar, P
Carandang, R.
Lee, J.Y.
Kamegawa, M.
Chuang, T.
Chang, Y.W.
Chapman, R.C.
description Various transport modes in superfluid helium are discussed in this paper. They include zero net mass flow (ZNMF) and finite mass flow (FMF) for pure superfluid and normal fluid flow. An attempt is made to characterize these transport modes in a common frame of reference. Two dimensionless numbers are used, namely the dimensionless heat flux number and the dimensionless driving force number. The equations are generalized by the use of a characteristic length so that they can be applied to the transport of He II in any geometry. The theories are then extended to applications in space. In particular, fountain effect pumps (FEPs) and superfluid management at zero g by vapour—liquid phase separators (VLPSs) will be discussed in detail. While transport in a phase separator is close to that of ZNMF, the flow in a FEP belongs to the FMF mode. The transport modes of the above systems using porous media are found to be strongly size dependent. For VLPSs, the heat rejection rate is proportional to the square root of plug permeability, K P. As in the case of FEPs, the volumetric flow rate is inversely proportional to K P. These findings are supported by ZNMF data in capillaries and FMF (gravitational flow) data in millipores, respectively.
doi_str_mv 10.1016/0011-2275(90)90081-M
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25006886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>001122759090081M</els_id><sourcerecordid>25006886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-4af3a6b2389b43da338db953322b95b304946f2c40f5b1f21abe542691ce18f43</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKv_QQ97UfSwOvnaJhdBil_Q4kE9h2w2gch2d81sBf97Uyt68zQw7_eGeY-QGYVLCrS6AqC0ZGwuzzVcaABFy9UemVA113nN5T6Z_CKH5AjxDQAEq9iEsOfN4FNoN7EpxmQ7HPo0FrZrijhiYYehjc6Ose-wiF2Bg3X-mBwE26I_-ZlT8np3-7J4KJdP94-Lm2XpuKrGUtjAbVUzrnQteGM5V02tJeeM5VFzEFpUgTkBQdY0MGprL_NTmjpPVRB8Ss52d4fUv288jmYd0fm2tZ3vN2iYBKiUqjIodqBLPWLywQwprm36NBTMtiCzTW-26Y0G812QWWXb6c99i862Iad3Ef-8eg6CSsjcbMd1Fq3pxoRZ09sGlZTzLF_vZJ-7-Ig-GXTRd843MXk3mqaP___xBfqOgMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25006886</pqid></control><display><type>article</type><title>Superfluid transport and its applications in space</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>NASA Technical Reports Server</source><creator>Yuan, S.W.K. ; Lee, J.M. ; Caspi, S. ; Soloski, S.C. ; Vote, F.C. ; Maddox, J.P. ; Amar, R.C. ; Linnet, C. ; Kamioka, Y. ; Kim, Y.I. ; Chen, W.E.W. ; Schweikle, J.D. ; Hepler, W.A. ; Khandhar, P ; Carandang, R. ; Lee, J.Y. ; Kamegawa, M. ; Chuang, T. ; Chang, Y.W. ; Chapman, R.C.</creator><creatorcontrib>Yuan, S.W.K. ; Lee, J.M. ; Caspi, S. ; Soloski, S.C. ; Vote, F.C. ; Maddox, J.P. ; Amar, R.C. ; Linnet, C. ; Kamioka, Y. ; Kim, Y.I. ; Chen, W.E.W. ; Schweikle, J.D. ; Hepler, W.A. ; Khandhar, P ; Carandang, R. ; Lee, J.Y. ; Kamegawa, M. ; Chuang, T. ; Chang, Y.W. ; Chapman, R.C.</creatorcontrib><description>Various transport modes in superfluid helium are discussed in this paper. They include zero net mass flow (ZNMF) and finite mass flow (FMF) for pure superfluid and normal fluid flow. An attempt is made to characterize these transport modes in a common frame of reference. Two dimensionless numbers are used, namely the dimensionless heat flux number and the dimensionless driving force number. The equations are generalized by the use of a characteristic length so that they can be applied to the transport of He II in any geometry. The theories are then extended to applications in space. In particular, fountain effect pumps (FEPs) and superfluid management at zero g by vapour—liquid phase separators (VLPSs) will be discussed in detail. While transport in a phase separator is close to that of ZNMF, the flow in a FEP belongs to the FMF mode. The transport modes of the above systems using porous media are found to be strongly size dependent. For VLPSs, the heat rejection rate is proportional to the square root of plug permeability, K P. As in the case of FEPs, the volumetric flow rate is inversely proportional to K P. These findings are supported by ZNMF data in capillaries and FMF (gravitational flow) data in millipores, respectively.</description><identifier>ISSN: 0011-2275</identifier><identifier>EISSN: 1879-2235</identifier><identifier>DOI: 10.1016/0011-2275(90)90081-M</identifier><identifier>CODEN: CRYOAX</identifier><language>eng</language><publisher>Legacy CDMS: Elsevier Ltd</publisher><subject>Applied sciences ; Cryogenics ; Energy ; Energy. Thermal use of fuels ; Engineering (General) ; Exact sciences and technology ; fountain effect pumps ; porous plugs ; Refrigerating engineering. Cryogenics. Food conservation ; space cryogenics ; superfluid transport ; vapour–liquid phase separators</subject><ispartof>Cryogenics (Guildford), 1990-03, Vol.30 (3), p.222-229</ispartof><rights>1990</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-4af3a6b2389b43da338db953322b95b304946f2c40f5b1f21abe542691ce18f43</citedby><cites>FETCH-LOGICAL-c386t-4af3a6b2389b43da338db953322b95b304946f2c40f5b1f21abe542691ce18f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0011-2275(90)90081-M$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19704150$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, S.W.K.</creatorcontrib><creatorcontrib>Lee, J.M.</creatorcontrib><creatorcontrib>Caspi, S.</creatorcontrib><creatorcontrib>Soloski, S.C.</creatorcontrib><creatorcontrib>Vote, F.C.</creatorcontrib><creatorcontrib>Maddox, J.P.</creatorcontrib><creatorcontrib>Amar, R.C.</creatorcontrib><creatorcontrib>Linnet, C.</creatorcontrib><creatorcontrib>Kamioka, Y.</creatorcontrib><creatorcontrib>Kim, Y.I.</creatorcontrib><creatorcontrib>Chen, W.E.W.</creatorcontrib><creatorcontrib>Schweikle, J.D.</creatorcontrib><creatorcontrib>Hepler, W.A.</creatorcontrib><creatorcontrib>Khandhar, P</creatorcontrib><creatorcontrib>Carandang, R.</creatorcontrib><creatorcontrib>Lee, J.Y.</creatorcontrib><creatorcontrib>Kamegawa, M.</creatorcontrib><creatorcontrib>Chuang, T.</creatorcontrib><creatorcontrib>Chang, Y.W.</creatorcontrib><creatorcontrib>Chapman, R.C.</creatorcontrib><title>Superfluid transport and its applications in space</title><title>Cryogenics (Guildford)</title><description>Various transport modes in superfluid helium are discussed in this paper. They include zero net mass flow (ZNMF) and finite mass flow (FMF) for pure superfluid and normal fluid flow. An attempt is made to characterize these transport modes in a common frame of reference. Two dimensionless numbers are used, namely the dimensionless heat flux number and the dimensionless driving force number. The equations are generalized by the use of a characteristic length so that they can be applied to the transport of He II in any geometry. The theories are then extended to applications in space. In particular, fountain effect pumps (FEPs) and superfluid management at zero g by vapour—liquid phase separators (VLPSs) will be discussed in detail. While transport in a phase separator is close to that of ZNMF, the flow in a FEP belongs to the FMF mode. The transport modes of the above systems using porous media are found to be strongly size dependent. For VLPSs, the heat rejection rate is proportional to the square root of plug permeability, K P. As in the case of FEPs, the volumetric flow rate is inversely proportional to K P. These findings are supported by ZNMF data in capillaries and FMF (gravitational flow) data in millipores, respectively.</description><subject>Applied sciences</subject><subject>Cryogenics</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering (General)</subject><subject>Exact sciences and technology</subject><subject>fountain effect pumps</subject><subject>porous plugs</subject><subject>Refrigerating engineering. Cryogenics. Food conservation</subject><subject>space cryogenics</subject><subject>superfluid transport</subject><subject>vapour–liquid phase separators</subject><issn>0011-2275</issn><issn>1879-2235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp9kM1LAzEQxYMoWKv_QQ97UfSwOvnaJhdBil_Q4kE9h2w2gch2d81sBf97Uyt68zQw7_eGeY-QGYVLCrS6AqC0ZGwuzzVcaABFy9UemVA113nN5T6Z_CKH5AjxDQAEq9iEsOfN4FNoN7EpxmQ7HPo0FrZrijhiYYehjc6Ose-wiF2Bg3X-mBwE26I_-ZlT8np3-7J4KJdP94-Lm2XpuKrGUtjAbVUzrnQteGM5V02tJeeM5VFzEFpUgTkBQdY0MGprL_NTmjpPVRB8Ss52d4fUv288jmYd0fm2tZ3vN2iYBKiUqjIodqBLPWLywQwprm36NBTMtiCzTW-26Y0G812QWWXb6c99i862Iad3Ef-8eg6CSsjcbMd1Fq3pxoRZ09sGlZTzLF_vZJ-7-Ig-GXTRd843MXk3mqaP___xBfqOgMk</recordid><startdate>19900301</startdate><enddate>19900301</enddate><creator>Yuan, S.W.K.</creator><creator>Lee, J.M.</creator><creator>Caspi, S.</creator><creator>Soloski, S.C.</creator><creator>Vote, F.C.</creator><creator>Maddox, J.P.</creator><creator>Amar, R.C.</creator><creator>Linnet, C.</creator><creator>Kamioka, Y.</creator><creator>Kim, Y.I.</creator><creator>Chen, W.E.W.</creator><creator>Schweikle, J.D.</creator><creator>Hepler, W.A.</creator><creator>Khandhar, P</creator><creator>Carandang, R.</creator><creator>Lee, J.Y.</creator><creator>Kamegawa, M.</creator><creator>Chuang, T.</creator><creator>Chang, Y.W.</creator><creator>Chapman, R.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19900301</creationdate><title>Superfluid transport and its applications in space</title><author>Yuan, S.W.K. ; Lee, J.M. ; Caspi, S. ; Soloski, S.C. ; Vote, F.C. ; Maddox, J.P. ; Amar, R.C. ; Linnet, C. ; Kamioka, Y. ; Kim, Y.I. ; Chen, W.E.W. ; Schweikle, J.D. ; Hepler, W.A. ; Khandhar, P ; Carandang, R. ; Lee, J.Y. ; Kamegawa, M. ; Chuang, T. ; Chang, Y.W. ; Chapman, R.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-4af3a6b2389b43da338db953322b95b304946f2c40f5b1f21abe542691ce18f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Applied sciences</topic><topic>Cryogenics</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering (General)</topic><topic>Exact sciences and technology</topic><topic>fountain effect pumps</topic><topic>porous plugs</topic><topic>Refrigerating engineering. Cryogenics. Food conservation</topic><topic>space cryogenics</topic><topic>superfluid transport</topic><topic>vapour–liquid phase separators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, S.W.K.</creatorcontrib><creatorcontrib>Lee, J.M.</creatorcontrib><creatorcontrib>Caspi, S.</creatorcontrib><creatorcontrib>Soloski, S.C.</creatorcontrib><creatorcontrib>Vote, F.C.</creatorcontrib><creatorcontrib>Maddox, J.P.</creatorcontrib><creatorcontrib>Amar, R.C.</creatorcontrib><creatorcontrib>Linnet, C.</creatorcontrib><creatorcontrib>Kamioka, Y.</creatorcontrib><creatorcontrib>Kim, Y.I.</creatorcontrib><creatorcontrib>Chen, W.E.W.</creatorcontrib><creatorcontrib>Schweikle, J.D.</creatorcontrib><creatorcontrib>Hepler, W.A.</creatorcontrib><creatorcontrib>Khandhar, P</creatorcontrib><creatorcontrib>Carandang, R.</creatorcontrib><creatorcontrib>Lee, J.Y.</creatorcontrib><creatorcontrib>Kamegawa, M.</creatorcontrib><creatorcontrib>Chuang, T.</creatorcontrib><creatorcontrib>Chang, Y.W.</creatorcontrib><creatorcontrib>Chapman, R.C.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Cryogenics (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, S.W.K.</au><au>Lee, J.M.</au><au>Caspi, S.</au><au>Soloski, S.C.</au><au>Vote, F.C.</au><au>Maddox, J.P.</au><au>Amar, R.C.</au><au>Linnet, C.</au><au>Kamioka, Y.</au><au>Kim, Y.I.</au><au>Chen, W.E.W.</au><au>Schweikle, J.D.</au><au>Hepler, W.A.</au><au>Khandhar, P</au><au>Carandang, R.</au><au>Lee, J.Y.</au><au>Kamegawa, M.</au><au>Chuang, T.</au><au>Chang, Y.W.</au><au>Chapman, R.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superfluid transport and its applications in space</atitle><jtitle>Cryogenics (Guildford)</jtitle><date>1990-03-01</date><risdate>1990</risdate><volume>30</volume><issue>3</issue><spage>222</spage><epage>229</epage><pages>222-229</pages><issn>0011-2275</issn><eissn>1879-2235</eissn><coden>CRYOAX</coden><abstract>Various transport modes in superfluid helium are discussed in this paper. They include zero net mass flow (ZNMF) and finite mass flow (FMF) for pure superfluid and normal fluid flow. An attempt is made to characterize these transport modes in a common frame of reference. Two dimensionless numbers are used, namely the dimensionless heat flux number and the dimensionless driving force number. The equations are generalized by the use of a characteristic length so that they can be applied to the transport of He II in any geometry. The theories are then extended to applications in space. In particular, fountain effect pumps (FEPs) and superfluid management at zero g by vapour—liquid phase separators (VLPSs) will be discussed in detail. While transport in a phase separator is close to that of ZNMF, the flow in a FEP belongs to the FMF mode. The transport modes of the above systems using porous media are found to be strongly size dependent. For VLPSs, the heat rejection rate is proportional to the square root of plug permeability, K P. As in the case of FEPs, the volumetric flow rate is inversely proportional to K P. These findings are supported by ZNMF data in capillaries and FMF (gravitational flow) data in millipores, respectively.</abstract><cop>Legacy CDMS</cop><pub>Elsevier Ltd</pub><doi>10.1016/0011-2275(90)90081-M</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-2275
ispartof Cryogenics (Guildford), 1990-03, Vol.30 (3), p.222-229
issn 0011-2275
1879-2235
language eng
recordid cdi_proquest_miscellaneous_25006886
source Elsevier ScienceDirect Journals Complete - AutoHoldings; NASA Technical Reports Server
subjects Applied sciences
Cryogenics
Energy
Energy. Thermal use of fuels
Engineering (General)
Exact sciences and technology
fountain effect pumps
porous plugs
Refrigerating engineering. Cryogenics. Food conservation
space cryogenics
superfluid transport
vapour–liquid phase separators
title Superfluid transport and its applications in space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superfluid%20transport%20and%20its%20applications%20in%20space&rft.jtitle=Cryogenics%20(Guildford)&rft.au=Yuan,%20S.W.K.&rft.date=1990-03-01&rft.volume=30&rft.issue=3&rft.spage=222&rft.epage=229&rft.pages=222-229&rft.issn=0011-2275&rft.eissn=1879-2235&rft.coden=CRYOAX&rft_id=info:doi/10.1016/0011-2275(90)90081-M&rft_dat=%3Cproquest_cross%3E25006886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25006886&rft_id=info:pmid/&rft_els_id=001122759090081M&rfr_iscdi=true