Tunable Linearity of High‐Performance Vertical Dual‐Gate vdW Phototransistors
Layered 2D semiconductors have been widely exploited in photodetectors due to their excellent electronic and optoelectronic properties. To improve their performance, photogating, photoconductive, photovoltaic, photothermoelectric, and other effects have been used in phototransistors and photodiodes...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-04, Vol.33 (15), p.e2008080-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 15 |
container_start_page | e2008080 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Xu, Jinpeng Luo, Xiaoguang Hu, Siqi Zhang, Xi Mei, Dong Liu, Fan Han, Nannan Liu, Dan Gan, Xuetao Cheng, Yingchun Huang, Wei |
description | Layered 2D semiconductors have been widely exploited in photodetectors due to their excellent electronic and optoelectronic properties. To improve their performance, photogating, photoconductive, photovoltaic, photothermoelectric, and other effects have been used in phototransistors and photodiodes made with 2D semiconductors or hybrid structures. However, it is difficult to achieve the desired high responsivity and linear photoresponse simultaneously in a monopolar conduction channel or a p–n junction. Here, dual‐channel conduction with ambipolar multilayer WSe2 is presented by employing the device concept of dual‐gate phototransistor, where p‐type and n‐type channels are produced in the same semiconductor using opposite dual‐gating. It is possible to tune the photoconductive gain using a vertical electric field, so that the gain is constant with respect to the light intensity—a linear photoresponse, with a high responsivity of ≈2.5 × 104 A W−1. Additionally, the 1/f noise of the device is kept at a low level under the opposite dual‐gating due to the reduction of current and carrier fluctuation, resulting in a high detectivity of ≈2 × 1013 Jones in the linear photoresponse regime. The linear photoresponse and high performance of the dual‐gate WSe2 phototransistor offer the possibility of achieving high‐resolution and quantitative light detection with layered 2D semiconductors.
Vertical dual‐gate van der Waals (vdW) phototransistors are fabricated based on ambipolar WSe2. With the tunability of the opposite dual‐gating, a linear photoresponse can be obtained with a high responsivity and low noise level, resulting in a high detectivity. The linear photoresponse with high performance of these phototransistors offers the possibility of achieving high‐resolution and quantitative light detection with layered 2D semiconductors. |
doi_str_mv | 10.1002/adma.202008080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2500374480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500374480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-d613855fe482f5d5bf1795a4ebddb53442933f9401fff0ebca13aeb2b90799af3</originalsourceid><addsrcrecordid>eNqFkMtKw0AUQAdRtD62LiXgxk3qnVeaWZZWW6GiQtVlmCR3NJJk6kyidOcn-I1-iSn1AW5kFncx5x4uh5BDCn0KwE51Xuk-AwYQd2-D9KhkNBSg5CbpgeIyVJGId8iu908AoCKItskO55ESjIoeuZm3tU5LDGZFjdoVzTKwJpgWD48fb-_X6Ix1la4zDO7QNUWmy2Dc6rL7m-gGg5f8Prh-tI1tnK594Rvr_D7ZMrr0ePA198jt-dl8NA1nV5OL0XAWZnzAIcwjymMpDYqYGZnL1NCBklpgmuep5EIwxblRAqgxBjDNNOUaU5YqGCilDd8jJ2vvwtnnFn2TVIXPsCx1jbb1CZMAfCBEDB16_Ad9sq2ru-s6ijIWUcWijuqvqcxZ7x2aZOGKSrtlQiFZxU5WsZOf2N3C0Ze2TSvMf_Dvuh2g1sBrUeLyH10yHF8Of-WfTUGMtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512261926</pqid></control><display><type>article</type><title>Tunable Linearity of High‐Performance Vertical Dual‐Gate vdW Phototransistors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Jinpeng ; Luo, Xiaoguang ; Hu, Siqi ; Zhang, Xi ; Mei, Dong ; Liu, Fan ; Han, Nannan ; Liu, Dan ; Gan, Xuetao ; Cheng, Yingchun ; Huang, Wei</creator><creatorcontrib>Xu, Jinpeng ; Luo, Xiaoguang ; Hu, Siqi ; Zhang, Xi ; Mei, Dong ; Liu, Fan ; Han, Nannan ; Liu, Dan ; Gan, Xuetao ; Cheng, Yingchun ; Huang, Wei</creatorcontrib><description>Layered 2D semiconductors have been widely exploited in photodetectors due to their excellent electronic and optoelectronic properties. To improve their performance, photogating, photoconductive, photovoltaic, photothermoelectric, and other effects have been used in phototransistors and photodiodes made with 2D semiconductors or hybrid structures. However, it is difficult to achieve the desired high responsivity and linear photoresponse simultaneously in a monopolar conduction channel or a p–n junction. Here, dual‐channel conduction with ambipolar multilayer WSe2 is presented by employing the device concept of dual‐gate phototransistor, where p‐type and n‐type channels are produced in the same semiconductor using opposite dual‐gating. It is possible to tune the photoconductive gain using a vertical electric field, so that the gain is constant with respect to the light intensity—a linear photoresponse, with a high responsivity of ≈2.5 × 104 A W−1. Additionally, the 1/f noise of the device is kept at a low level under the opposite dual‐gating due to the reduction of current and carrier fluctuation, resulting in a high detectivity of ≈2 × 1013 Jones in the linear photoresponse regime. The linear photoresponse and high performance of the dual‐gate WSe2 phototransistor offer the possibility of achieving high‐resolution and quantitative light detection with layered 2D semiconductors.
Vertical dual‐gate van der Waals (vdW) phototransistors are fabricated based on ambipolar WSe2. With the tunability of the opposite dual‐gating, a linear photoresponse can be obtained with a high responsivity and low noise level, resulting in a high detectivity. The linear photoresponse with high performance of these phototransistors offers the possibility of achieving high‐resolution and quantitative light detection with layered 2D semiconductors.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202008080</identifier><identifier>PMID: 33694214</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Current carriers ; dual‐gate photodetectors ; Electric fields ; high detectivity ; Hybrid structures ; linear photoresponse ; Linearity ; Low level ; Luminous intensity ; Materials science ; Multilayers ; noise power density ; Optoelectronics ; P-n junctions ; Photodiodes ; Phototransistors ; Semiconductors</subject><ispartof>Advanced materials (Weinheim), 2021-04, Vol.33 (15), p.e2008080-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-d613855fe482f5d5bf1795a4ebddb53442933f9401fff0ebca13aeb2b90799af3</citedby><cites>FETCH-LOGICAL-c3730-d613855fe482f5d5bf1795a4ebddb53442933f9401fff0ebca13aeb2b90799af3</cites><orcidid>0000-0002-1804-9262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202008080$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202008080$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33694214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jinpeng</creatorcontrib><creatorcontrib>Luo, Xiaoguang</creatorcontrib><creatorcontrib>Hu, Siqi</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Mei, Dong</creatorcontrib><creatorcontrib>Liu, Fan</creatorcontrib><creatorcontrib>Han, Nannan</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Gan, Xuetao</creatorcontrib><creatorcontrib>Cheng, Yingchun</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><title>Tunable Linearity of High‐Performance Vertical Dual‐Gate vdW Phototransistors</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Layered 2D semiconductors have been widely exploited in photodetectors due to their excellent electronic and optoelectronic properties. To improve their performance, photogating, photoconductive, photovoltaic, photothermoelectric, and other effects have been used in phototransistors and photodiodes made with 2D semiconductors or hybrid structures. However, it is difficult to achieve the desired high responsivity and linear photoresponse simultaneously in a monopolar conduction channel or a p–n junction. Here, dual‐channel conduction with ambipolar multilayer WSe2 is presented by employing the device concept of dual‐gate phototransistor, where p‐type and n‐type channels are produced in the same semiconductor using opposite dual‐gating. It is possible to tune the photoconductive gain using a vertical electric field, so that the gain is constant with respect to the light intensity—a linear photoresponse, with a high responsivity of ≈2.5 × 104 A W−1. Additionally, the 1/f noise of the device is kept at a low level under the opposite dual‐gating due to the reduction of current and carrier fluctuation, resulting in a high detectivity of ≈2 × 1013 Jones in the linear photoresponse regime. The linear photoresponse and high performance of the dual‐gate WSe2 phototransistor offer the possibility of achieving high‐resolution and quantitative light detection with layered 2D semiconductors.
Vertical dual‐gate van der Waals (vdW) phototransistors are fabricated based on ambipolar WSe2. With the tunability of the opposite dual‐gating, a linear photoresponse can be obtained with a high responsivity and low noise level, resulting in a high detectivity. The linear photoresponse with high performance of these phototransistors offers the possibility of achieving high‐resolution and quantitative light detection with layered 2D semiconductors.</description><subject>2D materials</subject><subject>Current carriers</subject><subject>dual‐gate photodetectors</subject><subject>Electric fields</subject><subject>high detectivity</subject><subject>Hybrid structures</subject><subject>linear photoresponse</subject><subject>Linearity</subject><subject>Low level</subject><subject>Luminous intensity</subject><subject>Materials science</subject><subject>Multilayers</subject><subject>noise power density</subject><subject>Optoelectronics</subject><subject>P-n junctions</subject><subject>Photodiodes</subject><subject>Phototransistors</subject><subject>Semiconductors</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AUQAdRtD62LiXgxk3qnVeaWZZWW6GiQtVlmCR3NJJk6kyidOcn-I1-iSn1AW5kFncx5x4uh5BDCn0KwE51Xuk-AwYQd2-D9KhkNBSg5CbpgeIyVJGId8iu908AoCKItskO55ESjIoeuZm3tU5LDGZFjdoVzTKwJpgWD48fb-_X6Ix1la4zDO7QNUWmy2Dc6rL7m-gGg5f8Prh-tI1tnK594Rvr_D7ZMrr0ePA198jt-dl8NA1nV5OL0XAWZnzAIcwjymMpDYqYGZnL1NCBklpgmuep5EIwxblRAqgxBjDNNOUaU5YqGCilDd8jJ2vvwtnnFn2TVIXPsCx1jbb1CZMAfCBEDB16_Ad9sq2ru-s6ijIWUcWijuqvqcxZ7x2aZOGKSrtlQiFZxU5WsZOf2N3C0Ze2TSvMf_Dvuh2g1sBrUeLyH10yHF8Of-WfTUGMtQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Xu, Jinpeng</creator><creator>Luo, Xiaoguang</creator><creator>Hu, Siqi</creator><creator>Zhang, Xi</creator><creator>Mei, Dong</creator><creator>Liu, Fan</creator><creator>Han, Nannan</creator><creator>Liu, Dan</creator><creator>Gan, Xuetao</creator><creator>Cheng, Yingchun</creator><creator>Huang, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1804-9262</orcidid></search><sort><creationdate>20210401</creationdate><title>Tunable Linearity of High‐Performance Vertical Dual‐Gate vdW Phototransistors</title><author>Xu, Jinpeng ; Luo, Xiaoguang ; Hu, Siqi ; Zhang, Xi ; Mei, Dong ; Liu, Fan ; Han, Nannan ; Liu, Dan ; Gan, Xuetao ; Cheng, Yingchun ; Huang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-d613855fe482f5d5bf1795a4ebddb53442933f9401fff0ebca13aeb2b90799af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2D materials</topic><topic>Current carriers</topic><topic>dual‐gate photodetectors</topic><topic>Electric fields</topic><topic>high detectivity</topic><topic>Hybrid structures</topic><topic>linear photoresponse</topic><topic>Linearity</topic><topic>Low level</topic><topic>Luminous intensity</topic><topic>Materials science</topic><topic>Multilayers</topic><topic>noise power density</topic><topic>Optoelectronics</topic><topic>P-n junctions</topic><topic>Photodiodes</topic><topic>Phototransistors</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jinpeng</creatorcontrib><creatorcontrib>Luo, Xiaoguang</creatorcontrib><creatorcontrib>Hu, Siqi</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Mei, Dong</creatorcontrib><creatorcontrib>Liu, Fan</creatorcontrib><creatorcontrib>Han, Nannan</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Gan, Xuetao</creatorcontrib><creatorcontrib>Cheng, Yingchun</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jinpeng</au><au>Luo, Xiaoguang</au><au>Hu, Siqi</au><au>Zhang, Xi</au><au>Mei, Dong</au><au>Liu, Fan</au><au>Han, Nannan</au><au>Liu, Dan</au><au>Gan, Xuetao</au><au>Cheng, Yingchun</au><au>Huang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable Linearity of High‐Performance Vertical Dual‐Gate vdW Phototransistors</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>33</volume><issue>15</issue><spage>e2008080</spage><epage>n/a</epage><pages>e2008080-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Layered 2D semiconductors have been widely exploited in photodetectors due to their excellent electronic and optoelectronic properties. To improve their performance, photogating, photoconductive, photovoltaic, photothermoelectric, and other effects have been used in phototransistors and photodiodes made with 2D semiconductors or hybrid structures. However, it is difficult to achieve the desired high responsivity and linear photoresponse simultaneously in a monopolar conduction channel or a p–n junction. Here, dual‐channel conduction with ambipolar multilayer WSe2 is presented by employing the device concept of dual‐gate phototransistor, where p‐type and n‐type channels are produced in the same semiconductor using opposite dual‐gating. It is possible to tune the photoconductive gain using a vertical electric field, so that the gain is constant with respect to the light intensity—a linear photoresponse, with a high responsivity of ≈2.5 × 104 A W−1. Additionally, the 1/f noise of the device is kept at a low level under the opposite dual‐gating due to the reduction of current and carrier fluctuation, resulting in a high detectivity of ≈2 × 1013 Jones in the linear photoresponse regime. The linear photoresponse and high performance of the dual‐gate WSe2 phototransistor offer the possibility of achieving high‐resolution and quantitative light detection with layered 2D semiconductors.
Vertical dual‐gate van der Waals (vdW) phototransistors are fabricated based on ambipolar WSe2. With the tunability of the opposite dual‐gating, a linear photoresponse can be obtained with a high responsivity and low noise level, resulting in a high detectivity. The linear photoresponse with high performance of these phototransistors offers the possibility of achieving high‐resolution and quantitative light detection with layered 2D semiconductors.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33694214</pmid><doi>10.1002/adma.202008080</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1804-9262</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-04, Vol.33 (15), p.e2008080-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2500374480 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 2D materials Current carriers dual‐gate photodetectors Electric fields high detectivity Hybrid structures linear photoresponse Linearity Low level Luminous intensity Materials science Multilayers noise power density Optoelectronics P-n junctions Photodiodes Phototransistors Semiconductors |
title | Tunable Linearity of High‐Performance Vertical Dual‐Gate vdW Phototransistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A25%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20Linearity%20of%20High%E2%80%90Performance%20Vertical%20Dual%E2%80%90Gate%20vdW%20Phototransistors&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Xu,%20Jinpeng&rft.date=2021-04-01&rft.volume=33&rft.issue=15&rft.spage=e2008080&rft.epage=n/a&rft.pages=e2008080-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202008080&rft_dat=%3Cproquest_cross%3E2500374480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512261926&rft_id=info:pmid/33694214&rfr_iscdi=true |