Discriminant Tensor-Based Manifold Embedding for Medical Hyperspectral Imagery

Medical hyperspectral imagery has recentlyattracted considerable attention. However, for identification tasks, the high dimensionality of hyperspectral images usually leads to poor performance. Thus, dimensionality reduction (DR) is crucial in hyperspectral image analysis. Motivated by exploiting th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2021-09, Vol.25 (9), p.3517-3528
Hauptverfasser: Lv, Meng, Li, Wei, Chen, Tianhong, Zhou, Jun, Tao, Ran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3528
container_issue 9
container_start_page 3517
container_title IEEE journal of biomedical and health informatics
container_volume 25
creator Lv, Meng
Li, Wei
Chen, Tianhong
Zhou, Jun
Tao, Ran
description Medical hyperspectral imagery has recentlyattracted considerable attention. However, for identification tasks, the high dimensionality of hyperspectral images usually leads to poor performance. Thus, dimensionality reduction (DR) is crucial in hyperspectral image analysis. Motivated by exploiting the underlying structure information of medical hyperspectral images and enhancing the discriminant ability of features, a discriminant tensor-based manifold embedding (DTME) is proposed for discriminant analysis of medical hyperspectral images. Based on the idea of manifold learning, a new discriminant similarity metric is designed, which takes into account the tensor representation, sparsity, low-rank and distribution characteristics. Then, an inter-class tensor graph and an intra-class tensor graph are constructed using the new similarity metric to reveal intrinsic manifold of hyperspectral data. Dimensionality reduction is achieved by embedding this supervised tensor graphs into the low-dimensional tensor subspace. Experimental results on membranous nephropathy and white bloodcells identification tasks demonstrate the potential clinical value of the proposed DTME.
doi_str_mv 10.1109/JBHI.2021.3065050
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2499930690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9373900</ieee_id><sourcerecordid>2499930690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-c6fd6630603821084468204e414b390442b5320ed2b97c8648e1a0952a1f06f73</originalsourceid><addsrcrecordid>eNpdkMtOAjEUhhujEYI8gDExk7hxM3h6mdIuBVEwoBtcN52ZM2TIXLCFBW9vCZeF3fT2nT_nfITcUxhQCvrlczSdDRgwOuAgE0jginQZlSpmDNT1-Uy16JC-92sIS4UnLW9Jh3OphioRXfL1VvrMlXXZ2GYbLbHxrYtH1mMeLWxTFm2VR5M6xTwvm1VUtC5aYF5mtoqm-w06v8Fs68JtVtsVuv0duSls5bF_2nvk532yHE_j-ffHbPw6jzMu9DbOZJFLGfoGrhgFJYRUDAQKKlKuQQiWJpwB5izVw0xJoZBa0AmztABZDHmPPB9zN6793aHfmjrMgVVlG2x33jChtQ75GgL69A9dtzvXhO4MSw4agCoeKHqkMtd677Awm2DFur2hYA6-zcG3Ofg2J9-h5vGUvEtrzC8VZ7sBeDgCJSJevjUfhhmB_wG6gYC2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568780183</pqid></control><display><type>article</type><title>Discriminant Tensor-Based Manifold Embedding for Medical Hyperspectral Imagery</title><source>IEEE Electronic Library (IEL)</source><creator>Lv, Meng ; Li, Wei ; Chen, Tianhong ; Zhou, Jun ; Tao, Ran</creator><creatorcontrib>Lv, Meng ; Li, Wei ; Chen, Tianhong ; Zhou, Jun ; Tao, Ran</creatorcontrib><description>Medical hyperspectral imagery has recentlyattracted considerable attention. However, for identification tasks, the high dimensionality of hyperspectral images usually leads to poor performance. Thus, dimensionality reduction (DR) is crucial in hyperspectral image analysis. Motivated by exploiting the underlying structure information of medical hyperspectral images and enhancing the discriminant ability of features, a discriminant tensor-based manifold embedding (DTME) is proposed for discriminant analysis of medical hyperspectral images. Based on the idea of manifold learning, a new discriminant similarity metric is designed, which takes into account the tensor representation, sparsity, low-rank and distribution characteristics. Then, an inter-class tensor graph and an intra-class tensor graph are constructed using the new similarity metric to reveal intrinsic manifold of hyperspectral data. Dimensionality reduction is achieved by embedding this supervised tensor graphs into the low-dimensional tensor subspace. Experimental results on membranous nephropathy and white bloodcells identification tasks demonstrate the potential clinical value of the proposed DTME.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2021.3065050</identifier><identifier>PMID: 33687854</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bioinformatics ; Biomedical measurement ; Collaboration ; Dimensionality reduction ; Discriminant analysis ; Embedding ; graph embedding ; Hyperspectral imaging ; Image analysis ; Image enhancement ; Image processing ; Machine learning ; Manifolds ; Manifolds (mathematics) ; Mathematical analysis ; Medical diagnosis ; Medical diagnostic imaging ; medical hyperspectral image ; Membranous nephropathy ; Nephropathy ; Reduction ; Similarity ; tensor ; Tensors</subject><ispartof>IEEE journal of biomedical and health informatics, 2021-09, Vol.25 (9), p.3517-3528</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-c6fd6630603821084468204e414b390442b5320ed2b97c8648e1a0952a1f06f73</citedby><cites>FETCH-LOGICAL-c349t-c6fd6630603821084468204e414b390442b5320ed2b97c8648e1a0952a1f06f73</cites><orcidid>0000-0001-5822-8233 ; 0000-0001-7015-7335 ; 0000-0002-5243-7189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9373900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9373900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33687854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Meng</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Chen, Tianhong</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><title>Discriminant Tensor-Based Manifold Embedding for Medical Hyperspectral Imagery</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Medical hyperspectral imagery has recentlyattracted considerable attention. However, for identification tasks, the high dimensionality of hyperspectral images usually leads to poor performance. Thus, dimensionality reduction (DR) is crucial in hyperspectral image analysis. Motivated by exploiting the underlying structure information of medical hyperspectral images and enhancing the discriminant ability of features, a discriminant tensor-based manifold embedding (DTME) is proposed for discriminant analysis of medical hyperspectral images. Based on the idea of manifold learning, a new discriminant similarity metric is designed, which takes into account the tensor representation, sparsity, low-rank and distribution characteristics. Then, an inter-class tensor graph and an intra-class tensor graph are constructed using the new similarity metric to reveal intrinsic manifold of hyperspectral data. Dimensionality reduction is achieved by embedding this supervised tensor graphs into the low-dimensional tensor subspace. Experimental results on membranous nephropathy and white bloodcells identification tasks demonstrate the potential clinical value of the proposed DTME.</description><subject>Bioinformatics</subject><subject>Biomedical measurement</subject><subject>Collaboration</subject><subject>Dimensionality reduction</subject><subject>Discriminant analysis</subject><subject>Embedding</subject><subject>graph embedding</subject><subject>Hyperspectral imaging</subject><subject>Image analysis</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical analysis</subject><subject>Medical diagnosis</subject><subject>Medical diagnostic imaging</subject><subject>medical hyperspectral image</subject><subject>Membranous nephropathy</subject><subject>Nephropathy</subject><subject>Reduction</subject><subject>Similarity</subject><subject>tensor</subject><subject>Tensors</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOAjEUhhujEYI8gDExk7hxM3h6mdIuBVEwoBtcN52ZM2TIXLCFBW9vCZeF3fT2nT_nfITcUxhQCvrlczSdDRgwOuAgE0jginQZlSpmDNT1-Uy16JC-92sIS4UnLW9Jh3OphioRXfL1VvrMlXXZ2GYbLbHxrYtH1mMeLWxTFm2VR5M6xTwvm1VUtC5aYF5mtoqm-w06v8Fs68JtVtsVuv0duSls5bF_2nvk532yHE_j-ffHbPw6jzMu9DbOZJFLGfoGrhgFJYRUDAQKKlKuQQiWJpwB5izVw0xJoZBa0AmztABZDHmPPB9zN6793aHfmjrMgVVlG2x33jChtQ75GgL69A9dtzvXhO4MSw4agCoeKHqkMtd677Awm2DFur2hYA6-zcG3Ofg2J9-h5vGUvEtrzC8VZ7sBeDgCJSJevjUfhhmB_wG6gYC2</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Lv, Meng</creator><creator>Li, Wei</creator><creator>Chen, Tianhong</creator><creator>Zhou, Jun</creator><creator>Tao, Ran</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5822-8233</orcidid><orcidid>https://orcid.org/0000-0001-7015-7335</orcidid><orcidid>https://orcid.org/0000-0002-5243-7189</orcidid></search><sort><creationdate>20210901</creationdate><title>Discriminant Tensor-Based Manifold Embedding for Medical Hyperspectral Imagery</title><author>Lv, Meng ; Li, Wei ; Chen, Tianhong ; Zhou, Jun ; Tao, Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-c6fd6630603821084468204e414b390442b5320ed2b97c8648e1a0952a1f06f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioinformatics</topic><topic>Biomedical measurement</topic><topic>Collaboration</topic><topic>Dimensionality reduction</topic><topic>Discriminant analysis</topic><topic>Embedding</topic><topic>graph embedding</topic><topic>Hyperspectral imaging</topic><topic>Image analysis</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical analysis</topic><topic>Medical diagnosis</topic><topic>Medical diagnostic imaging</topic><topic>medical hyperspectral image</topic><topic>Membranous nephropathy</topic><topic>Nephropathy</topic><topic>Reduction</topic><topic>Similarity</topic><topic>tensor</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Meng</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Chen, Tianhong</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lv, Meng</au><au>Li, Wei</au><au>Chen, Tianhong</au><au>Zhou, Jun</au><au>Tao, Ran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discriminant Tensor-Based Manifold Embedding for Medical Hyperspectral Imagery</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>25</volume><issue>9</issue><spage>3517</spage><epage>3528</epage><pages>3517-3528</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Medical hyperspectral imagery has recentlyattracted considerable attention. However, for identification tasks, the high dimensionality of hyperspectral images usually leads to poor performance. Thus, dimensionality reduction (DR) is crucial in hyperspectral image analysis. Motivated by exploiting the underlying structure information of medical hyperspectral images and enhancing the discriminant ability of features, a discriminant tensor-based manifold embedding (DTME) is proposed for discriminant analysis of medical hyperspectral images. Based on the idea of manifold learning, a new discriminant similarity metric is designed, which takes into account the tensor representation, sparsity, low-rank and distribution characteristics. Then, an inter-class tensor graph and an intra-class tensor graph are constructed using the new similarity metric to reveal intrinsic manifold of hyperspectral data. Dimensionality reduction is achieved by embedding this supervised tensor graphs into the low-dimensional tensor subspace. Experimental results on membranous nephropathy and white bloodcells identification tasks demonstrate the potential clinical value of the proposed DTME.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33687854</pmid><doi>10.1109/JBHI.2021.3065050</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5822-8233</orcidid><orcidid>https://orcid.org/0000-0001-7015-7335</orcidid><orcidid>https://orcid.org/0000-0002-5243-7189</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2021-09, Vol.25 (9), p.3517-3528
issn 2168-2194
2168-2208
language eng
recordid cdi_proquest_miscellaneous_2499930690
source IEEE Electronic Library (IEL)
subjects Bioinformatics
Biomedical measurement
Collaboration
Dimensionality reduction
Discriminant analysis
Embedding
graph embedding
Hyperspectral imaging
Image analysis
Image enhancement
Image processing
Machine learning
Manifolds
Manifolds (mathematics)
Mathematical analysis
Medical diagnosis
Medical diagnostic imaging
medical hyperspectral image
Membranous nephropathy
Nephropathy
Reduction
Similarity
tensor
Tensors
title Discriminant Tensor-Based Manifold Embedding for Medical Hyperspectral Imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discriminant%20Tensor-Based%20Manifold%20Embedding%20for%20Medical%20Hyperspectral%20Imagery&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Lv,%20Meng&rft.date=2021-09-01&rft.volume=25&rft.issue=9&rft.spage=3517&rft.epage=3528&rft.pages=3517-3528&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2021.3065050&rft_dat=%3Cproquest_RIE%3E2499930690%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568780183&rft_id=info:pmid/33687854&rft_ieee_id=9373900&rfr_iscdi=true