Discriminant Tensor-Based Manifold Embedding for Medical Hyperspectral Imagery
Medical hyperspectral imagery has recentlyattracted considerable attention. However, for identification tasks, the high dimensionality of hyperspectral images usually leads to poor performance. Thus, dimensionality reduction (DR) is crucial in hyperspectral image analysis. Motivated by exploiting th...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2021-09, Vol.25 (9), p.3517-3528 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3528 |
---|---|
container_issue | 9 |
container_start_page | 3517 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 25 |
creator | Lv, Meng Li, Wei Chen, Tianhong Zhou, Jun Tao, Ran |
description | Medical hyperspectral imagery has recentlyattracted considerable attention. However, for identification tasks, the high dimensionality of hyperspectral images usually leads to poor performance. Thus, dimensionality reduction (DR) is crucial in hyperspectral image analysis. Motivated by exploiting the underlying structure information of medical hyperspectral images and enhancing the discriminant ability of features, a discriminant tensor-based manifold embedding (DTME) is proposed for discriminant analysis of medical hyperspectral images. Based on the idea of manifold learning, a new discriminant similarity metric is designed, which takes into account the tensor representation, sparsity, low-rank and distribution characteristics. Then, an inter-class tensor graph and an intra-class tensor graph are constructed using the new similarity metric to reveal intrinsic manifold of hyperspectral data. Dimensionality reduction is achieved by embedding this supervised tensor graphs into the low-dimensional tensor subspace. Experimental results on membranous nephropathy and white bloodcells identification tasks demonstrate the potential clinical value of the proposed DTME. |
doi_str_mv | 10.1109/JBHI.2021.3065050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2499930690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9373900</ieee_id><sourcerecordid>2499930690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-c6fd6630603821084468204e414b390442b5320ed2b97c8648e1a0952a1f06f73</originalsourceid><addsrcrecordid>eNpdkMtOAjEUhhujEYI8gDExk7hxM3h6mdIuBVEwoBtcN52ZM2TIXLCFBW9vCZeF3fT2nT_nfITcUxhQCvrlczSdDRgwOuAgE0jginQZlSpmDNT1-Uy16JC-92sIS4UnLW9Jh3OphioRXfL1VvrMlXXZ2GYbLbHxrYtH1mMeLWxTFm2VR5M6xTwvm1VUtC5aYF5mtoqm-w06v8Fs68JtVtsVuv0duSls5bF_2nvk532yHE_j-ffHbPw6jzMu9DbOZJFLGfoGrhgFJYRUDAQKKlKuQQiWJpwB5izVw0xJoZBa0AmztABZDHmPPB9zN6793aHfmjrMgVVlG2x33jChtQ75GgL69A9dtzvXhO4MSw4agCoeKHqkMtd677Awm2DFur2hYA6-zcG3Ofg2J9-h5vGUvEtrzC8VZ7sBeDgCJSJevjUfhhmB_wG6gYC2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568780183</pqid></control><display><type>article</type><title>Discriminant Tensor-Based Manifold Embedding for Medical Hyperspectral Imagery</title><source>IEEE Electronic Library (IEL)</source><creator>Lv, Meng ; Li, Wei ; Chen, Tianhong ; Zhou, Jun ; Tao, Ran</creator><creatorcontrib>Lv, Meng ; Li, Wei ; Chen, Tianhong ; Zhou, Jun ; Tao, Ran</creatorcontrib><description>Medical hyperspectral imagery has recentlyattracted considerable attention. However, for identification tasks, the high dimensionality of hyperspectral images usually leads to poor performance. Thus, dimensionality reduction (DR) is crucial in hyperspectral image analysis. Motivated by exploiting the underlying structure information of medical hyperspectral images and enhancing the discriminant ability of features, a discriminant tensor-based manifold embedding (DTME) is proposed for discriminant analysis of medical hyperspectral images. Based on the idea of manifold learning, a new discriminant similarity metric is designed, which takes into account the tensor representation, sparsity, low-rank and distribution characteristics. Then, an inter-class tensor graph and an intra-class tensor graph are constructed using the new similarity metric to reveal intrinsic manifold of hyperspectral data. Dimensionality reduction is achieved by embedding this supervised tensor graphs into the low-dimensional tensor subspace. Experimental results on membranous nephropathy and white bloodcells identification tasks demonstrate the potential clinical value of the proposed DTME.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2021.3065050</identifier><identifier>PMID: 33687854</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bioinformatics ; Biomedical measurement ; Collaboration ; Dimensionality reduction ; Discriminant analysis ; Embedding ; graph embedding ; Hyperspectral imaging ; Image analysis ; Image enhancement ; Image processing ; Machine learning ; Manifolds ; Manifolds (mathematics) ; Mathematical analysis ; Medical diagnosis ; Medical diagnostic imaging ; medical hyperspectral image ; Membranous nephropathy ; Nephropathy ; Reduction ; Similarity ; tensor ; Tensors</subject><ispartof>IEEE journal of biomedical and health informatics, 2021-09, Vol.25 (9), p.3517-3528</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-c6fd6630603821084468204e414b390442b5320ed2b97c8648e1a0952a1f06f73</citedby><cites>FETCH-LOGICAL-c349t-c6fd6630603821084468204e414b390442b5320ed2b97c8648e1a0952a1f06f73</cites><orcidid>0000-0001-5822-8233 ; 0000-0001-7015-7335 ; 0000-0002-5243-7189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9373900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9373900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33687854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Meng</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Chen, Tianhong</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><title>Discriminant Tensor-Based Manifold Embedding for Medical Hyperspectral Imagery</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Medical hyperspectral imagery has recentlyattracted considerable attention. However, for identification tasks, the high dimensionality of hyperspectral images usually leads to poor performance. Thus, dimensionality reduction (DR) is crucial in hyperspectral image analysis. Motivated by exploiting the underlying structure information of medical hyperspectral images and enhancing the discriminant ability of features, a discriminant tensor-based manifold embedding (DTME) is proposed for discriminant analysis of medical hyperspectral images. Based on the idea of manifold learning, a new discriminant similarity metric is designed, which takes into account the tensor representation, sparsity, low-rank and distribution characteristics. Then, an inter-class tensor graph and an intra-class tensor graph are constructed using the new similarity metric to reveal intrinsic manifold of hyperspectral data. Dimensionality reduction is achieved by embedding this supervised tensor graphs into the low-dimensional tensor subspace. Experimental results on membranous nephropathy and white bloodcells identification tasks demonstrate the potential clinical value of the proposed DTME.</description><subject>Bioinformatics</subject><subject>Biomedical measurement</subject><subject>Collaboration</subject><subject>Dimensionality reduction</subject><subject>Discriminant analysis</subject><subject>Embedding</subject><subject>graph embedding</subject><subject>Hyperspectral imaging</subject><subject>Image analysis</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical analysis</subject><subject>Medical diagnosis</subject><subject>Medical diagnostic imaging</subject><subject>medical hyperspectral image</subject><subject>Membranous nephropathy</subject><subject>Nephropathy</subject><subject>Reduction</subject><subject>Similarity</subject><subject>tensor</subject><subject>Tensors</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOAjEUhhujEYI8gDExk7hxM3h6mdIuBVEwoBtcN52ZM2TIXLCFBW9vCZeF3fT2nT_nfITcUxhQCvrlczSdDRgwOuAgE0jginQZlSpmDNT1-Uy16JC-92sIS4UnLW9Jh3OphioRXfL1VvrMlXXZ2GYbLbHxrYtH1mMeLWxTFm2VR5M6xTwvm1VUtC5aYF5mtoqm-w06v8Fs68JtVtsVuv0duSls5bF_2nvk532yHE_j-ffHbPw6jzMu9DbOZJFLGfoGrhgFJYRUDAQKKlKuQQiWJpwB5izVw0xJoZBa0AmztABZDHmPPB9zN6793aHfmjrMgVVlG2x33jChtQ75GgL69A9dtzvXhO4MSw4agCoeKHqkMtd677Awm2DFur2hYA6-zcG3Ofg2J9-h5vGUvEtrzC8VZ7sBeDgCJSJevjUfhhmB_wG6gYC2</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Lv, Meng</creator><creator>Li, Wei</creator><creator>Chen, Tianhong</creator><creator>Zhou, Jun</creator><creator>Tao, Ran</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5822-8233</orcidid><orcidid>https://orcid.org/0000-0001-7015-7335</orcidid><orcidid>https://orcid.org/0000-0002-5243-7189</orcidid></search><sort><creationdate>20210901</creationdate><title>Discriminant Tensor-Based Manifold Embedding for Medical Hyperspectral Imagery</title><author>Lv, Meng ; Li, Wei ; Chen, Tianhong ; Zhou, Jun ; Tao, Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-c6fd6630603821084468204e414b390442b5320ed2b97c8648e1a0952a1f06f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioinformatics</topic><topic>Biomedical measurement</topic><topic>Collaboration</topic><topic>Dimensionality reduction</topic><topic>Discriminant analysis</topic><topic>Embedding</topic><topic>graph embedding</topic><topic>Hyperspectral imaging</topic><topic>Image analysis</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical analysis</topic><topic>Medical diagnosis</topic><topic>Medical diagnostic imaging</topic><topic>medical hyperspectral image</topic><topic>Membranous nephropathy</topic><topic>Nephropathy</topic><topic>Reduction</topic><topic>Similarity</topic><topic>tensor</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Meng</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Chen, Tianhong</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lv, Meng</au><au>Li, Wei</au><au>Chen, Tianhong</au><au>Zhou, Jun</au><au>Tao, Ran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discriminant Tensor-Based Manifold Embedding for Medical Hyperspectral Imagery</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>25</volume><issue>9</issue><spage>3517</spage><epage>3528</epage><pages>3517-3528</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Medical hyperspectral imagery has recentlyattracted considerable attention. However, for identification tasks, the high dimensionality of hyperspectral images usually leads to poor performance. Thus, dimensionality reduction (DR) is crucial in hyperspectral image analysis. Motivated by exploiting the underlying structure information of medical hyperspectral images and enhancing the discriminant ability of features, a discriminant tensor-based manifold embedding (DTME) is proposed for discriminant analysis of medical hyperspectral images. Based on the idea of manifold learning, a new discriminant similarity metric is designed, which takes into account the tensor representation, sparsity, low-rank and distribution characteristics. Then, an inter-class tensor graph and an intra-class tensor graph are constructed using the new similarity metric to reveal intrinsic manifold of hyperspectral data. Dimensionality reduction is achieved by embedding this supervised tensor graphs into the low-dimensional tensor subspace. Experimental results on membranous nephropathy and white bloodcells identification tasks demonstrate the potential clinical value of the proposed DTME.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33687854</pmid><doi>10.1109/JBHI.2021.3065050</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5822-8233</orcidid><orcidid>https://orcid.org/0000-0001-7015-7335</orcidid><orcidid>https://orcid.org/0000-0002-5243-7189</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2021-09, Vol.25 (9), p.3517-3528 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_proquest_miscellaneous_2499930690 |
source | IEEE Electronic Library (IEL) |
subjects | Bioinformatics Biomedical measurement Collaboration Dimensionality reduction Discriminant analysis Embedding graph embedding Hyperspectral imaging Image analysis Image enhancement Image processing Machine learning Manifolds Manifolds (mathematics) Mathematical analysis Medical diagnosis Medical diagnostic imaging medical hyperspectral image Membranous nephropathy Nephropathy Reduction Similarity tensor Tensors |
title | Discriminant Tensor-Based Manifold Embedding for Medical Hyperspectral Imagery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discriminant%20Tensor-Based%20Manifold%20Embedding%20for%20Medical%20Hyperspectral%20Imagery&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Lv,%20Meng&rft.date=2021-09-01&rft.volume=25&rft.issue=9&rft.spage=3517&rft.epage=3528&rft.pages=3517-3528&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2021.3065050&rft_dat=%3Cproquest_RIE%3E2499930690%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568780183&rft_id=info:pmid/33687854&rft_ieee_id=9373900&rfr_iscdi=true |