Multi-parametric approach to predict prosthetic valve size using CMR and clinical data: insights from SAVR

The purpose of this investigation was to characterize the CMR and clinical parameters that correlate to prosthetic valve size (PVS) determined at SAVR and develop a multi-parametric model to predict PVS. Sixty-two subjects were included. Linear/area measurements of the aortic annulus were performed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International Journal of Cardiovascular Imaging 2021-07, Vol.37 (7), p.2269-2276
Hauptverfasser: Mordini, Federico E., Hynes, Conor F., Amdur, Richard L., Panting, Jeffrey, Emerson, Dominic A., Morrissette, Jason, Goheen-Thomas, Erin, Greenberg, Michael D., Trachiotis, Gregory D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2276
container_issue 7
container_start_page 2269
container_title The International Journal of Cardiovascular Imaging
container_volume 37
creator Mordini, Federico E.
Hynes, Conor F.
Amdur, Richard L.
Panting, Jeffrey
Emerson, Dominic A.
Morrissette, Jason
Goheen-Thomas, Erin
Greenberg, Michael D.
Trachiotis, Gregory D.
description The purpose of this investigation was to characterize the CMR and clinical parameters that correlate to prosthetic valve size (PVS) determined at SAVR and develop a multi-parametric model to predict PVS. Sixty-two subjects were included. Linear/area measurements of the aortic annulus were performed on cine CMR images in systole/diastole on long/short axis (SAX) views. Clinical parameters (age, habitus, valve lesion, valve morphology) were recorded. PVS determined intraoperatively was the reference value. Data were analyzed using Spearman correlation. A prediction model combining imaging and clinical parameters was generated. Imaging parameters had moderate to moderately strong correlation to PVS with the highest correlations from systolic SAX mean diameter (r = 0.73, p 
doi_str_mv 10.1007/s10554-021-02203-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2499929168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552759034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-624b133c2fca8d384fb292eddc4eeae841ae5da5a818b5bcf3f109fe966d24843</originalsourceid><addsrcrecordid>eNp9kUtrFEEQxxsxmBj9Ah6kwYuXMf2cmfYWFl-QIMTHtanprtntZV529wT009vrRgM5eCiqoH71r6L-hLzg7A1nrLlInGmtKiZ4CcFkpR-RM64bWbFGyceHujaVbow6JU9T2jPGBBPyCTmVsm4NM-aM7K_XIYdqgQgj5hgchWWJM7gdzTNdIvrgcslzyjvMpX0Lwy3SFH4hXVOYtnRzfUNh8tQNYQoOBuohw1saphS2u5xoH-eRfrn8fvOMnPQwJHx-l8_Jt_fvvm4-VlefP3zaXF5VTjY6V7VQHZfSid5B62Wr-k4Ygd47hQjYKg6oPWhoedvpzvWy58z0aOraC9UqeU5eH3XL1T9WTNmOITkcBphwXpMVyhgjDK_bgr56gO7nNU7lOiu0Fo02TB4ExZFy5Q0pYm-XGEaIPy1n9uCEPTphixP2jxNWl6GXd9JrN6L_N_L39QWQRyCV1rTFeL_7P7K_AaRolD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552759034</pqid></control><display><type>article</type><title>Multi-parametric approach to predict prosthetic valve size using CMR and clinical data: insights from SAVR</title><source>SpringerLink Journals</source><creator>Mordini, Federico E. ; Hynes, Conor F. ; Amdur, Richard L. ; Panting, Jeffrey ; Emerson, Dominic A. ; Morrissette, Jason ; Goheen-Thomas, Erin ; Greenberg, Michael D. ; Trachiotis, Gregory D.</creator><creatorcontrib>Mordini, Federico E. ; Hynes, Conor F. ; Amdur, Richard L. ; Panting, Jeffrey ; Emerson, Dominic A. ; Morrissette, Jason ; Goheen-Thomas, Erin ; Greenberg, Michael D. ; Trachiotis, Gregory D.</creatorcontrib><description>The purpose of this investigation was to characterize the CMR and clinical parameters that correlate to prosthetic valve size (PVS) determined at SAVR and develop a multi-parametric model to predict PVS. Sixty-two subjects were included. Linear/area measurements of the aortic annulus were performed on cine CMR images in systole/diastole on long/short axis (SAX) views. Clinical parameters (age, habitus, valve lesion, valve morphology) were recorded. PVS determined intraoperatively was the reference value. Data were analyzed using Spearman correlation. A prediction model combining imaging and clinical parameters was generated. Imaging parameters had moderate to moderately strong correlation to PVS with the highest correlations from systolic SAX mean diameter (r = 0.73, p &lt; 0.0001) and diastolic SAX area (r = 0.73, p &lt; 0.0001). Age was negatively correlated to PVS (r = − 0.47, p = 0.0001). Weight was weakly correlated to PVS (r = 0.27, p = 0.032). AI and bicuspid valve were not predictors of PVS. A model combining clinical and imaging parameters had high accuracy in predicting PVS (R 2  = 0.61). Model predicted mean PVS was 23.3 mm (SD 1.1); actual mean PVS was 23.3 mm (SD 1.3). The Spearman r of the model (0.80, 95% CI 0.683–0.874) was significantly higher than systolic SAX area (0.68, 95% CI 0.516–0.795). Clinical parameters like age and habitus impact PVS; valve lesion/morphology do not. A multi-parametric model demonstrated high accuracy in predicting PVS and was superior to a single imaging parameter. A multi-parametric approach to device sizing may have future application in TAVR.</description><identifier>ISSN: 1569-5794</identifier><identifier>EISSN: 1573-0743</identifier><identifier>EISSN: 1875-8312</identifier><identifier>DOI: 10.1007/s10554-021-02203-5</identifier><identifier>PMID: 33689099</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Age ; Aorta ; Cardiac Imaging ; Cardiology ; Diameters ; Diastole ; Habitus ; Imaging ; Lesions ; Mathematical models ; Medicine ; Medicine &amp; Public Health ; Model accuracy ; Morphology ; Original Paper ; Parameters ; Parametric statistics ; Prediction models ; Prostheses ; Radiology ; Systole</subject><ispartof>The International Journal of Cardiovascular Imaging, 2021-07, Vol.37 (7), p.2269-2276</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-624b133c2fca8d384fb292eddc4eeae841ae5da5a818b5bcf3f109fe966d24843</citedby><cites>FETCH-LOGICAL-c375t-624b133c2fca8d384fb292eddc4eeae841ae5da5a818b5bcf3f109fe966d24843</cites><orcidid>0000-0003-4483-5678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10554-021-02203-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10554-021-02203-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33689099$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mordini, Federico E.</creatorcontrib><creatorcontrib>Hynes, Conor F.</creatorcontrib><creatorcontrib>Amdur, Richard L.</creatorcontrib><creatorcontrib>Panting, Jeffrey</creatorcontrib><creatorcontrib>Emerson, Dominic A.</creatorcontrib><creatorcontrib>Morrissette, Jason</creatorcontrib><creatorcontrib>Goheen-Thomas, Erin</creatorcontrib><creatorcontrib>Greenberg, Michael D.</creatorcontrib><creatorcontrib>Trachiotis, Gregory D.</creatorcontrib><title>Multi-parametric approach to predict prosthetic valve size using CMR and clinical data: insights from SAVR</title><title>The International Journal of Cardiovascular Imaging</title><addtitle>Int J Cardiovasc Imaging</addtitle><addtitle>Int J Cardiovasc Imaging</addtitle><description>The purpose of this investigation was to characterize the CMR and clinical parameters that correlate to prosthetic valve size (PVS) determined at SAVR and develop a multi-parametric model to predict PVS. Sixty-two subjects were included. Linear/area measurements of the aortic annulus were performed on cine CMR images in systole/diastole on long/short axis (SAX) views. Clinical parameters (age, habitus, valve lesion, valve morphology) were recorded. PVS determined intraoperatively was the reference value. Data were analyzed using Spearman correlation. A prediction model combining imaging and clinical parameters was generated. Imaging parameters had moderate to moderately strong correlation to PVS with the highest correlations from systolic SAX mean diameter (r = 0.73, p &lt; 0.0001) and diastolic SAX area (r = 0.73, p &lt; 0.0001). Age was negatively correlated to PVS (r = − 0.47, p = 0.0001). Weight was weakly correlated to PVS (r = 0.27, p = 0.032). AI and bicuspid valve were not predictors of PVS. A model combining clinical and imaging parameters had high accuracy in predicting PVS (R 2  = 0.61). Model predicted mean PVS was 23.3 mm (SD 1.1); actual mean PVS was 23.3 mm (SD 1.3). The Spearman r of the model (0.80, 95% CI 0.683–0.874) was significantly higher than systolic SAX area (0.68, 95% CI 0.516–0.795). Clinical parameters like age and habitus impact PVS; valve lesion/morphology do not. A multi-parametric model demonstrated high accuracy in predicting PVS and was superior to a single imaging parameter. A multi-parametric approach to device sizing may have future application in TAVR.</description><subject>Age</subject><subject>Aorta</subject><subject>Cardiac Imaging</subject><subject>Cardiology</subject><subject>Diameters</subject><subject>Diastole</subject><subject>Habitus</subject><subject>Imaging</subject><subject>Lesions</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Model accuracy</subject><subject>Morphology</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Parametric statistics</subject><subject>Prediction models</subject><subject>Prostheses</subject><subject>Radiology</subject><subject>Systole</subject><issn>1569-5794</issn><issn>1573-0743</issn><issn>1875-8312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9kUtrFEEQxxsxmBj9Ah6kwYuXMf2cmfYWFl-QIMTHtanprtntZV529wT009vrRgM5eCiqoH71r6L-hLzg7A1nrLlInGmtKiZ4CcFkpR-RM64bWbFGyceHujaVbow6JU9T2jPGBBPyCTmVsm4NM-aM7K_XIYdqgQgj5hgchWWJM7gdzTNdIvrgcslzyjvMpX0Lwy3SFH4hXVOYtnRzfUNh8tQNYQoOBuohw1saphS2u5xoH-eRfrn8fvOMnPQwJHx-l8_Jt_fvvm4-VlefP3zaXF5VTjY6V7VQHZfSid5B62Wr-k4Ygd47hQjYKg6oPWhoedvpzvWy58z0aOraC9UqeU5eH3XL1T9WTNmOITkcBphwXpMVyhgjDK_bgr56gO7nNU7lOiu0Fo02TB4ExZFy5Q0pYm-XGEaIPy1n9uCEPTphixP2jxNWl6GXd9JrN6L_N_L39QWQRyCV1rTFeL_7P7K_AaRolD4</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Mordini, Federico E.</creator><creator>Hynes, Conor F.</creator><creator>Amdur, Richard L.</creator><creator>Panting, Jeffrey</creator><creator>Emerson, Dominic A.</creator><creator>Morrissette, Jason</creator><creator>Goheen-Thomas, Erin</creator><creator>Greenberg, Michael D.</creator><creator>Trachiotis, Gregory D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4483-5678</orcidid></search><sort><creationdate>20210701</creationdate><title>Multi-parametric approach to predict prosthetic valve size using CMR and clinical data: insights from SAVR</title><author>Mordini, Federico E. ; Hynes, Conor F. ; Amdur, Richard L. ; Panting, Jeffrey ; Emerson, Dominic A. ; Morrissette, Jason ; Goheen-Thomas, Erin ; Greenberg, Michael D. ; Trachiotis, Gregory D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-624b133c2fca8d384fb292eddc4eeae841ae5da5a818b5bcf3f109fe966d24843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Aorta</topic><topic>Cardiac Imaging</topic><topic>Cardiology</topic><topic>Diameters</topic><topic>Diastole</topic><topic>Habitus</topic><topic>Imaging</topic><topic>Lesions</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Model accuracy</topic><topic>Morphology</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Parametric statistics</topic><topic>Prediction models</topic><topic>Prostheses</topic><topic>Radiology</topic><topic>Systole</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mordini, Federico E.</creatorcontrib><creatorcontrib>Hynes, Conor F.</creatorcontrib><creatorcontrib>Amdur, Richard L.</creatorcontrib><creatorcontrib>Panting, Jeffrey</creatorcontrib><creatorcontrib>Emerson, Dominic A.</creatorcontrib><creatorcontrib>Morrissette, Jason</creatorcontrib><creatorcontrib>Goheen-Thomas, Erin</creatorcontrib><creatorcontrib>Greenberg, Michael D.</creatorcontrib><creatorcontrib>Trachiotis, Gregory D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>The International Journal of Cardiovascular Imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mordini, Federico E.</au><au>Hynes, Conor F.</au><au>Amdur, Richard L.</au><au>Panting, Jeffrey</au><au>Emerson, Dominic A.</au><au>Morrissette, Jason</au><au>Goheen-Thomas, Erin</au><au>Greenberg, Michael D.</au><au>Trachiotis, Gregory D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-parametric approach to predict prosthetic valve size using CMR and clinical data: insights from SAVR</atitle><jtitle>The International Journal of Cardiovascular Imaging</jtitle><stitle>Int J Cardiovasc Imaging</stitle><addtitle>Int J Cardiovasc Imaging</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>37</volume><issue>7</issue><spage>2269</spage><epage>2276</epage><pages>2269-2276</pages><issn>1569-5794</issn><eissn>1573-0743</eissn><eissn>1875-8312</eissn><abstract>The purpose of this investigation was to characterize the CMR and clinical parameters that correlate to prosthetic valve size (PVS) determined at SAVR and develop a multi-parametric model to predict PVS. Sixty-two subjects were included. Linear/area measurements of the aortic annulus were performed on cine CMR images in systole/diastole on long/short axis (SAX) views. Clinical parameters (age, habitus, valve lesion, valve morphology) were recorded. PVS determined intraoperatively was the reference value. Data were analyzed using Spearman correlation. A prediction model combining imaging and clinical parameters was generated. Imaging parameters had moderate to moderately strong correlation to PVS with the highest correlations from systolic SAX mean diameter (r = 0.73, p &lt; 0.0001) and diastolic SAX area (r = 0.73, p &lt; 0.0001). Age was negatively correlated to PVS (r = − 0.47, p = 0.0001). Weight was weakly correlated to PVS (r = 0.27, p = 0.032). AI and bicuspid valve were not predictors of PVS. A model combining clinical and imaging parameters had high accuracy in predicting PVS (R 2  = 0.61). Model predicted mean PVS was 23.3 mm (SD 1.1); actual mean PVS was 23.3 mm (SD 1.3). The Spearman r of the model (0.80, 95% CI 0.683–0.874) was significantly higher than systolic SAX area (0.68, 95% CI 0.516–0.795). Clinical parameters like age and habitus impact PVS; valve lesion/morphology do not. A multi-parametric model demonstrated high accuracy in predicting PVS and was superior to a single imaging parameter. A multi-parametric approach to device sizing may have future application in TAVR.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>33689099</pmid><doi>10.1007/s10554-021-02203-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4483-5678</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1569-5794
ispartof The International Journal of Cardiovascular Imaging, 2021-07, Vol.37 (7), p.2269-2276
issn 1569-5794
1573-0743
1875-8312
language eng
recordid cdi_proquest_miscellaneous_2499929168
source SpringerLink Journals
subjects Age
Aorta
Cardiac Imaging
Cardiology
Diameters
Diastole
Habitus
Imaging
Lesions
Mathematical models
Medicine
Medicine & Public Health
Model accuracy
Morphology
Original Paper
Parameters
Parametric statistics
Prediction models
Prostheses
Radiology
Systole
title Multi-parametric approach to predict prosthetic valve size using CMR and clinical data: insights from SAVR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-parametric%20approach%20to%20predict%20prosthetic%20valve%20size%20using%20CMR%20and%20clinical%20data:%20insights%20from%20SAVR&rft.jtitle=The%20International%20Journal%20of%20Cardiovascular%20Imaging&rft.au=Mordini,%20Federico%20E.&rft.date=2021-07-01&rft.volume=37&rft.issue=7&rft.spage=2269&rft.epage=2276&rft.pages=2269-2276&rft.issn=1569-5794&rft.eissn=1573-0743&rft_id=info:doi/10.1007/s10554-021-02203-5&rft_dat=%3Cproquest_cross%3E2552759034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552759034&rft_id=info:pmid/33689099&rfr_iscdi=true