Solitary waves of the regularised long-wave equation

A finite element solution of the Regularised Long Wave Equation, based on Galerkin's method using cubic splines as element shape functions, is set up. A linear stability analysis shows the scheme to be unconditionally stable. Test problems, including the migration and interaction of solitary wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 1990-12, Vol.91 (2), p.441-459
Hauptverfasser: Gardner, L.R.T, Gardner, G.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 459
container_issue 2
container_start_page 441
container_title Journal of computational physics
container_volume 91
creator Gardner, L.R.T
Gardner, G.A
description A finite element solution of the Regularised Long Wave Equation, based on Galerkin's method using cubic splines as element shape functions, is set up. A linear stability analysis shows the scheme to be unconditionally stable. Test problems, including the migration and interaction of solitary waves, are used to validate the method, which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The temporal evolution of a Maxwellian initial pulse is then studied.
doi_str_mv 10.1016/0021-9991(90)90047-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24997351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021999190900475</els_id><sourcerecordid>24997351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-f407139d6f1551b4bbde6d51808653c413f508292840520327904aec5cc5156f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxiygGAInL-SeEFCFV9SJQZgtlznXIzSuLXTIv49Ca1gY7rhnvc9PUfIKYUrCrS4BmA0V0rRCwWXCkCUudwjIwoKclbSYp-MfpFDcpTSBwBUUlQjIl5C4zsTv7JPs8GUBZd175hFnK8bE33COmtCO8-HbYartel8aI_JgTNNwpPdHJO3-7vXyWM-fX54mtxOc8uLssudgJJyVReOSklnYjarsaglraAqJLeCciehYopVAiQDzkoFwqCV1koqC8fH5Hzbu4xhtcbU6YVPFpvGtBjWSTOhVMkl7UGxBW0MKUV0ehn9orfSFPTwIj3468FfK9A_L9Kyj53t-k2ypnHRtNanv6zifb9kPXez5bCX3XiMOlmPrcXaR7SdroP__9A3UcN4Mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24997351</pqid></control><display><type>article</type><title>Solitary waves of the regularised long-wave equation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gardner, L.R.T ; Gardner, G.A</creator><creatorcontrib>Gardner, L.R.T ; Gardner, G.A</creatorcontrib><description>A finite element solution of the Regularised Long Wave Equation, based on Galerkin's method using cubic splines as element shape functions, is set up. A linear stability analysis shows the scheme to be unconditionally stable. Test problems, including the migration and interaction of solitary waves, are used to validate the method, which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The temporal evolution of a Maxwellian initial pulse is then studied.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/0021-9991(90)90047-5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Exact sciences and technology ; Mathematical methods in physics ; Numerical approximation and analysis ; Physics</subject><ispartof>Journal of computational physics, 1990-12, Vol.91 (2), p.441-459</ispartof><rights>1990</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-f407139d6f1551b4bbde6d51808653c413f508292840520327904aec5cc5156f3</citedby><cites>FETCH-LOGICAL-c367t-f407139d6f1551b4bbde6d51808653c413f508292840520327904aec5cc5156f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0021-9991(90)90047-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19399752$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gardner, L.R.T</creatorcontrib><creatorcontrib>Gardner, G.A</creatorcontrib><title>Solitary waves of the regularised long-wave equation</title><title>Journal of computational physics</title><description>A finite element solution of the Regularised Long Wave Equation, based on Galerkin's method using cubic splines as element shape functions, is set up. A linear stability analysis shows the scheme to be unconditionally stable. Test problems, including the migration and interaction of solitary waves, are used to validate the method, which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The temporal evolution of a Maxwellian initial pulse is then studied.</description><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Physics</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxiygGAInL-SeEFCFV9SJQZgtlznXIzSuLXTIv49Ca1gY7rhnvc9PUfIKYUrCrS4BmA0V0rRCwWXCkCUudwjIwoKclbSYp-MfpFDcpTSBwBUUlQjIl5C4zsTv7JPs8GUBZd175hFnK8bE33COmtCO8-HbYartel8aI_JgTNNwpPdHJO3-7vXyWM-fX54mtxOc8uLssudgJJyVReOSklnYjarsaglraAqJLeCciehYopVAiQDzkoFwqCV1koqC8fH5Hzbu4xhtcbU6YVPFpvGtBjWSTOhVMkl7UGxBW0MKUV0ehn9orfSFPTwIj3468FfK9A_L9Kyj53t-k2ypnHRtNanv6zifb9kPXez5bCX3XiMOlmPrcXaR7SdroP__9A3UcN4Mw</recordid><startdate>19901201</startdate><enddate>19901201</enddate><creator>Gardner, L.R.T</creator><creator>Gardner, G.A</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19901201</creationdate><title>Solitary waves of the regularised long-wave equation</title><author>Gardner, L.R.T ; Gardner, G.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-f407139d6f1551b4bbde6d51808653c413f508292840520327904aec5cc5156f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gardner, L.R.T</creatorcontrib><creatorcontrib>Gardner, G.A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gardner, L.R.T</au><au>Gardner, G.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solitary waves of the regularised long-wave equation</atitle><jtitle>Journal of computational physics</jtitle><date>1990-12-01</date><risdate>1990</risdate><volume>91</volume><issue>2</issue><spage>441</spage><epage>459</epage><pages>441-459</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A finite element solution of the Regularised Long Wave Equation, based on Galerkin's method using cubic splines as element shape functions, is set up. A linear stability analysis shows the scheme to be unconditionally stable. Test problems, including the migration and interaction of solitary waves, are used to validate the method, which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The temporal evolution of a Maxwellian initial pulse is then studied.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/0021-9991(90)90047-5</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 1990-12, Vol.91 (2), p.441-459
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_24997351
source ScienceDirect Journals (5 years ago - present)
subjects Exact sciences and technology
Mathematical methods in physics
Numerical approximation and analysis
Physics
title Solitary waves of the regularised long-wave equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solitary%20waves%20of%20the%20regularised%20long-wave%20equation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Gardner,%20L.R.T&rft.date=1990-12-01&rft.volume=91&rft.issue=2&rft.spage=441&rft.epage=459&rft.pages=441-459&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/0021-9991(90)90047-5&rft_dat=%3Cproquest_cross%3E24997351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24997351&rft_id=info:pmid/&rft_els_id=0021999190900475&rfr_iscdi=true