Solitary waves of the regularised long-wave equation
A finite element solution of the Regularised Long Wave Equation, based on Galerkin's method using cubic splines as element shape functions, is set up. A linear stability analysis shows the scheme to be unconditionally stable. Test problems, including the migration and interaction of solitary wa...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 1990-12, Vol.91 (2), p.441-459 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 459 |
---|---|
container_issue | 2 |
container_start_page | 441 |
container_title | Journal of computational physics |
container_volume | 91 |
creator | Gardner, L.R.T Gardner, G.A |
description | A finite element solution of the Regularised Long Wave Equation, based on Galerkin's method using cubic splines as element shape functions, is set up. A linear stability analysis shows the scheme to be unconditionally stable. Test problems, including the migration and interaction of solitary waves, are used to validate the method, which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The temporal evolution of a Maxwellian initial pulse is then studied. |
doi_str_mv | 10.1016/0021-9991(90)90047-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24997351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021999190900475</els_id><sourcerecordid>24997351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-f407139d6f1551b4bbde6d51808653c413f508292840520327904aec5cc5156f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxiygGAInL-SeEFCFV9SJQZgtlznXIzSuLXTIv49Ca1gY7rhnvc9PUfIKYUrCrS4BmA0V0rRCwWXCkCUudwjIwoKclbSYp-MfpFDcpTSBwBUUlQjIl5C4zsTv7JPs8GUBZd175hFnK8bE33COmtCO8-HbYartel8aI_JgTNNwpPdHJO3-7vXyWM-fX54mtxOc8uLssudgJJyVReOSklnYjarsaglraAqJLeCciehYopVAiQDzkoFwqCV1koqC8fH5Hzbu4xhtcbU6YVPFpvGtBjWSTOhVMkl7UGxBW0MKUV0ehn9orfSFPTwIj3468FfK9A_L9Kyj53t-k2ypnHRtNanv6zifb9kPXez5bCX3XiMOlmPrcXaR7SdroP__9A3UcN4Mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24997351</pqid></control><display><type>article</type><title>Solitary waves of the regularised long-wave equation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gardner, L.R.T ; Gardner, G.A</creator><creatorcontrib>Gardner, L.R.T ; Gardner, G.A</creatorcontrib><description>A finite element solution of the Regularised Long Wave Equation, based on Galerkin's method using cubic splines as element shape functions, is set up. A linear stability analysis shows the scheme to be unconditionally stable. Test problems, including the migration and interaction of solitary waves, are used to validate the method, which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The temporal evolution of a Maxwellian initial pulse is then studied.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/0021-9991(90)90047-5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Exact sciences and technology ; Mathematical methods in physics ; Numerical approximation and analysis ; Physics</subject><ispartof>Journal of computational physics, 1990-12, Vol.91 (2), p.441-459</ispartof><rights>1990</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-f407139d6f1551b4bbde6d51808653c413f508292840520327904aec5cc5156f3</citedby><cites>FETCH-LOGICAL-c367t-f407139d6f1551b4bbde6d51808653c413f508292840520327904aec5cc5156f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0021-9991(90)90047-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19399752$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gardner, L.R.T</creatorcontrib><creatorcontrib>Gardner, G.A</creatorcontrib><title>Solitary waves of the regularised long-wave equation</title><title>Journal of computational physics</title><description>A finite element solution of the Regularised Long Wave Equation, based on Galerkin's method using cubic splines as element shape functions, is set up. A linear stability analysis shows the scheme to be unconditionally stable. Test problems, including the migration and interaction of solitary waves, are used to validate the method, which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The temporal evolution of a Maxwellian initial pulse is then studied.</description><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Physics</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxiygGAInL-SeEFCFV9SJQZgtlznXIzSuLXTIv49Ca1gY7rhnvc9PUfIKYUrCrS4BmA0V0rRCwWXCkCUudwjIwoKclbSYp-MfpFDcpTSBwBUUlQjIl5C4zsTv7JPs8GUBZd175hFnK8bE33COmtCO8-HbYartel8aI_JgTNNwpPdHJO3-7vXyWM-fX54mtxOc8uLssudgJJyVReOSklnYjarsaglraAqJLeCciehYopVAiQDzkoFwqCV1koqC8fH5Hzbu4xhtcbU6YVPFpvGtBjWSTOhVMkl7UGxBW0MKUV0ehn9orfSFPTwIj3468FfK9A_L9Kyj53t-k2ypnHRtNanv6zifb9kPXez5bCX3XiMOlmPrcXaR7SdroP__9A3UcN4Mw</recordid><startdate>19901201</startdate><enddate>19901201</enddate><creator>Gardner, L.R.T</creator><creator>Gardner, G.A</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19901201</creationdate><title>Solitary waves of the regularised long-wave equation</title><author>Gardner, L.R.T ; Gardner, G.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-f407139d6f1551b4bbde6d51808653c413f508292840520327904aec5cc5156f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gardner, L.R.T</creatorcontrib><creatorcontrib>Gardner, G.A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gardner, L.R.T</au><au>Gardner, G.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solitary waves of the regularised long-wave equation</atitle><jtitle>Journal of computational physics</jtitle><date>1990-12-01</date><risdate>1990</risdate><volume>91</volume><issue>2</issue><spage>441</spage><epage>459</epage><pages>441-459</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A finite element solution of the Regularised Long Wave Equation, based on Galerkin's method using cubic splines as element shape functions, is set up. A linear stability analysis shows the scheme to be unconditionally stable. Test problems, including the migration and interaction of solitary waves, are used to validate the method, which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The temporal evolution of a Maxwellian initial pulse is then studied.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/0021-9991(90)90047-5</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 1990-12, Vol.91 (2), p.441-459 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_24997351 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Exact sciences and technology Mathematical methods in physics Numerical approximation and analysis Physics |
title | Solitary waves of the regularised long-wave equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solitary%20waves%20of%20the%20regularised%20long-wave%20equation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Gardner,%20L.R.T&rft.date=1990-12-01&rft.volume=91&rft.issue=2&rft.spage=441&rft.epage=459&rft.pages=441-459&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/0021-9991(90)90047-5&rft_dat=%3Cproquest_cross%3E24997351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24997351&rft_id=info:pmid/&rft_els_id=0021999190900475&rfr_iscdi=true |