Fluorophore unmixing based on bleaching and recovery kinetics using MCR-ALS

Fluorescence microscopy is a key technology in the life sciences, though its performance is constrained by the number of labels that can be recorded. We propose to use the kinetics of fluorophore photodestruction and subsequent fluorescence recovery to distinguish multiple spectrally-overlapping emi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2021-05, Vol.226, p.122117-122117, Article 122117
Hauptverfasser: Hugelier, S., Van den Eynde, R., Vandenberg, W., Dedecker, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122117
container_issue
container_start_page 122117
container_title Talanta (Oxford)
container_volume 226
creator Hugelier, S.
Van den Eynde, R.
Vandenberg, W.
Dedecker, P.
description Fluorescence microscopy is a key technology in the life sciences, though its performance is constrained by the number of labels that can be recorded. We propose to use the kinetics of fluorophore photodestruction and subsequent fluorescence recovery to distinguish multiple spectrally-overlapping emitters in fixed cells, thus enhancing the information that can be obtained from a single measurement. We show that the data can be directly processed using multivariate curve resolution - alternating least squares (MCR-ALS) to deliver distinct images for each fluorophore in their local environment, and apply this methodology to membrane imaging using DiBAC4(3) and concanavalin A - Alexa Fluor 488 as the fluorophores. We find that the DiBAC4(3) displays two distinct degradation/recovery kinetics that correspond to two different label distributions, allowing us to simultaneously distinguish three different fluorescence distributions from two spectrally overlapping fluorophores. We expect that our approach will scale to other dynamically-binding dyes, leading to similarly increased multiplexing capability. [Display omitted] •Three distinct membranes were visualized using only the green colour channel.•(Bio-)chemical knowledge was included in MCR-ALS as constraints during optimization.•Photodestruction and recovery were used as sources of information for multiplexing.•The approach could potentially be applied to a wide array of dynamically binding dyes.
doi_str_mv 10.1016/j.talanta.2021.122117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2498998688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039914021000382</els_id><sourcerecordid>2498998688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-cc263fbf9b8a9b102cef23abaab483515dc8b2bff02d23a8a2a64859e907239e3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EouXxE0A5cknwo0nsE6oqCogiJB5ny3Y21CWNi51U9N-TKIUrp5VmZ3a0H0IXBCcEk-x6lTSqUnWjEoopSQilhOQHaEx4zmKW5uwQjTFmIhZkgkfoJIQVxpgyzI7RiLEsz7KcjtHjvGqdd5ul8xC19dp-2_oj0ipAEbk60hUos-wlVReRB-O24HfRp62hsSZEbeh3T7OXeLp4PUNHpaoCnO_nKXqf377N7uPF893DbLqIDcvSJjaGZqzUpdBcCU0wNVBSprRSesJZStLCcE11WWJadDpXVGUTngoQOKdMADtFV8PdjXdfLYRGrm0wUHU4wLVB0ongQvCM886aDlbjXQgeSrnxdq38ThIse45yJfccZc9RDhy73OW-otVrKP5Sv-A6w81ggO7RrQUvg7FQGyhsR6mRhbP_VPwANy2Gig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498998688</pqid></control><display><type>article</type><title>Fluorophore unmixing based on bleaching and recovery kinetics using MCR-ALS</title><source>Elsevier ScienceDirect Journals</source><creator>Hugelier, S. ; Van den Eynde, R. ; Vandenberg, W. ; Dedecker, P.</creator><creatorcontrib>Hugelier, S. ; Van den Eynde, R. ; Vandenberg, W. ; Dedecker, P.</creatorcontrib><description>Fluorescence microscopy is a key technology in the life sciences, though its performance is constrained by the number of labels that can be recorded. We propose to use the kinetics of fluorophore photodestruction and subsequent fluorescence recovery to distinguish multiple spectrally-overlapping emitters in fixed cells, thus enhancing the information that can be obtained from a single measurement. We show that the data can be directly processed using multivariate curve resolution - alternating least squares (MCR-ALS) to deliver distinct images for each fluorophore in their local environment, and apply this methodology to membrane imaging using DiBAC4(3) and concanavalin A - Alexa Fluor 488 as the fluorophores. We find that the DiBAC4(3) displays two distinct degradation/recovery kinetics that correspond to two different label distributions, allowing us to simultaneously distinguish three different fluorescence distributions from two spectrally overlapping fluorophores. We expect that our approach will scale to other dynamically-binding dyes, leading to similarly increased multiplexing capability. [Display omitted] •Three distinct membranes were visualized using only the green colour channel.•(Bio-)chemical knowledge was included in MCR-ALS as constraints during optimization.•Photodestruction and recovery were used as sources of information for multiplexing.•The approach could potentially be applied to a wide array of dynamically binding dyes.</description><identifier>ISSN: 0039-9140</identifier><identifier>EISSN: 1873-3573</identifier><identifier>DOI: 10.1016/j.talanta.2021.122117</identifier><identifier>PMID: 33676672</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Eukaryotic membrane labelling ; Fluorescence microscopy ; Image unmixing ; Multi-label imaging</subject><ispartof>Talanta (Oxford), 2021-05, Vol.226, p.122117-122117, Article 122117</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright © 2021 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-cc263fbf9b8a9b102cef23abaab483515dc8b2bff02d23a8a2a64859e907239e3</citedby><cites>FETCH-LOGICAL-c365t-cc263fbf9b8a9b102cef23abaab483515dc8b2bff02d23a8a2a64859e907239e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0039914021000382$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33676672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hugelier, S.</creatorcontrib><creatorcontrib>Van den Eynde, R.</creatorcontrib><creatorcontrib>Vandenberg, W.</creatorcontrib><creatorcontrib>Dedecker, P.</creatorcontrib><title>Fluorophore unmixing based on bleaching and recovery kinetics using MCR-ALS</title><title>Talanta (Oxford)</title><addtitle>Talanta</addtitle><description>Fluorescence microscopy is a key technology in the life sciences, though its performance is constrained by the number of labels that can be recorded. We propose to use the kinetics of fluorophore photodestruction and subsequent fluorescence recovery to distinguish multiple spectrally-overlapping emitters in fixed cells, thus enhancing the information that can be obtained from a single measurement. We show that the data can be directly processed using multivariate curve resolution - alternating least squares (MCR-ALS) to deliver distinct images for each fluorophore in their local environment, and apply this methodology to membrane imaging using DiBAC4(3) and concanavalin A - Alexa Fluor 488 as the fluorophores. We find that the DiBAC4(3) displays two distinct degradation/recovery kinetics that correspond to two different label distributions, allowing us to simultaneously distinguish three different fluorescence distributions from two spectrally overlapping fluorophores. We expect that our approach will scale to other dynamically-binding dyes, leading to similarly increased multiplexing capability. [Display omitted] •Three distinct membranes were visualized using only the green colour channel.•(Bio-)chemical knowledge was included in MCR-ALS as constraints during optimization.•Photodestruction and recovery were used as sources of information for multiplexing.•The approach could potentially be applied to a wide array of dynamically binding dyes.</description><subject>Eukaryotic membrane labelling</subject><subject>Fluorescence microscopy</subject><subject>Image unmixing</subject><subject>Multi-label imaging</subject><issn>0039-9140</issn><issn>1873-3573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EouXxE0A5cknwo0nsE6oqCogiJB5ny3Y21CWNi51U9N-TKIUrp5VmZ3a0H0IXBCcEk-x6lTSqUnWjEoopSQilhOQHaEx4zmKW5uwQjTFmIhZkgkfoJIQVxpgyzI7RiLEsz7KcjtHjvGqdd5ul8xC19dp-2_oj0ipAEbk60hUos-wlVReRB-O24HfRp62hsSZEbeh3T7OXeLp4PUNHpaoCnO_nKXqf377N7uPF893DbLqIDcvSJjaGZqzUpdBcCU0wNVBSprRSesJZStLCcE11WWJadDpXVGUTngoQOKdMADtFV8PdjXdfLYRGrm0wUHU4wLVB0ongQvCM886aDlbjXQgeSrnxdq38ThIse45yJfccZc9RDhy73OW-otVrKP5Sv-A6w81ggO7RrQUvg7FQGyhsR6mRhbP_VPwANy2Gig</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Hugelier, S.</creator><creator>Van den Eynde, R.</creator><creator>Vandenberg, W.</creator><creator>Dedecker, P.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210501</creationdate><title>Fluorophore unmixing based on bleaching and recovery kinetics using MCR-ALS</title><author>Hugelier, S. ; Van den Eynde, R. ; Vandenberg, W. ; Dedecker, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-cc263fbf9b8a9b102cef23abaab483515dc8b2bff02d23a8a2a64859e907239e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Eukaryotic membrane labelling</topic><topic>Fluorescence microscopy</topic><topic>Image unmixing</topic><topic>Multi-label imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hugelier, S.</creatorcontrib><creatorcontrib>Van den Eynde, R.</creatorcontrib><creatorcontrib>Vandenberg, W.</creatorcontrib><creatorcontrib>Dedecker, P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Talanta (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hugelier, S.</au><au>Van den Eynde, R.</au><au>Vandenberg, W.</au><au>Dedecker, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorophore unmixing based on bleaching and recovery kinetics using MCR-ALS</atitle><jtitle>Talanta (Oxford)</jtitle><addtitle>Talanta</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>226</volume><spage>122117</spage><epage>122117</epage><pages>122117-122117</pages><artnum>122117</artnum><issn>0039-9140</issn><eissn>1873-3573</eissn><abstract>Fluorescence microscopy is a key technology in the life sciences, though its performance is constrained by the number of labels that can be recorded. We propose to use the kinetics of fluorophore photodestruction and subsequent fluorescence recovery to distinguish multiple spectrally-overlapping emitters in fixed cells, thus enhancing the information that can be obtained from a single measurement. We show that the data can be directly processed using multivariate curve resolution - alternating least squares (MCR-ALS) to deliver distinct images for each fluorophore in their local environment, and apply this methodology to membrane imaging using DiBAC4(3) and concanavalin A - Alexa Fluor 488 as the fluorophores. We find that the DiBAC4(3) displays two distinct degradation/recovery kinetics that correspond to two different label distributions, allowing us to simultaneously distinguish three different fluorescence distributions from two spectrally overlapping fluorophores. We expect that our approach will scale to other dynamically-binding dyes, leading to similarly increased multiplexing capability. [Display omitted] •Three distinct membranes were visualized using only the green colour channel.•(Bio-)chemical knowledge was included in MCR-ALS as constraints during optimization.•Photodestruction and recovery were used as sources of information for multiplexing.•The approach could potentially be applied to a wide array of dynamically binding dyes.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33676672</pmid><doi>10.1016/j.talanta.2021.122117</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-9140
ispartof Talanta (Oxford), 2021-05, Vol.226, p.122117-122117, Article 122117
issn 0039-9140
1873-3573
language eng
recordid cdi_proquest_miscellaneous_2498998688
source Elsevier ScienceDirect Journals
subjects Eukaryotic membrane labelling
Fluorescence microscopy
Image unmixing
Multi-label imaging
title Fluorophore unmixing based on bleaching and recovery kinetics using MCR-ALS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A15%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorophore%20unmixing%20based%20on%20bleaching%20and%20recovery%20kinetics%20using%20MCR-ALS&rft.jtitle=Talanta%20(Oxford)&rft.au=Hugelier,%20S.&rft.date=2021-05-01&rft.volume=226&rft.spage=122117&rft.epage=122117&rft.pages=122117-122117&rft.artnum=122117&rft.issn=0039-9140&rft.eissn=1873-3573&rft_id=info:doi/10.1016/j.talanta.2021.122117&rft_dat=%3Cproquest_cross%3E2498998688%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498998688&rft_id=info:pmid/33676672&rft_els_id=S0039914021000382&rfr_iscdi=true