A Facile Synthesized Polymer Featuring B‐N Covalent Bond and Small Singlet‐Triplet Gap for High‐Performance Organic Solar Cells

High‐efficiency organic solar cells (OSCs) largely rely on polymer donors. Herein, we report a new building block BNT and a relevant polymer PBNT‐BDD featuring B‐N covalent bond for application in OSCs. The BNT unit is synthesized in only 3 steps, leading to the facile synthesis of PBNT‐BDD. When bl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2021-04, Vol.60 (16), p.8813-8817
Hauptverfasser: Pang, Shuting, Wang, Zhiqiang, Yuan, Xiyue, Pan, Langheng, Deng, Wanyuan, Tang, Haoran, Wu, Hongbin, Chen, Shanshan, Duan, Chunhui, Huang, Fei, Cao, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8817
container_issue 16
container_start_page 8813
container_title Angewandte Chemie International Edition
container_volume 60
creator Pang, Shuting
Wang, Zhiqiang
Yuan, Xiyue
Pan, Langheng
Deng, Wanyuan
Tang, Haoran
Wu, Hongbin
Chen, Shanshan
Duan, Chunhui
Huang, Fei
Cao, Yong
description High‐efficiency organic solar cells (OSCs) largely rely on polymer donors. Herein, we report a new building block BNT and a relevant polymer PBNT‐BDD featuring B‐N covalent bond for application in OSCs. The BNT unit is synthesized in only 3 steps, leading to the facile synthesis of PBNT‐BDD. When blended with a nonfullerene acceptor Y6‐BO, PBNT‐BDD afforded a power conversion efficiency (PCE) of 16.1 % in an OSC, comparable to the benzo[1,2‐b:4,5‐b′]dithiophene (BDT)‐based counterpart. The nonradiative recombination energy loss of 0.19 eV was afforded by PBNT‐BDD. PBNT‐BDD also exhibited weak crystallinity and appropriate miscibility with Y6‐BO, benefitting of morphological stability. The singlet–triplet gap (ΔEST) of PBNT‐BDD is as low as 0.15 eV, which is much lower than those of common organic semiconductors (≥0.6 eV). As a result, the triplet state of PBNT‐BDD is higher than the charge transfer (CT) state, which would suppress the recombination via triplet state effectively. An easily synthesized building block BNT and a relevant polymer PBNT‐BDD featuring B‐N covalent bond were synthesized for application in solar cells. The polymer offered a power conversion efficiency of 16.1 %, a nonradiative recombination energy loss of 0.19 eV, and a singlet‐triplet gap as low as 0.15 eV, demonstrating the promising prospect of B‐N‐containing materials in organic photovoltaics.
doi_str_mv 10.1002/anie.202016265
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2498995746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509222731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4765-d30b9aedc71b34609080bf3c9beca70aba16669f5c72ff3cc9611b77dd07db553</originalsourceid><addsrcrecordid>eNqFkU9LHDEYh0Npqdb22mMJ9NLLrPkzSSbHdXFVEBXWnkMm8846kplsk5mW7cmL935GP4mRVQu99BDy5uXJjx88CH2mZEYJYYd26GDGCCNUMineoH0qGC24UvxtnkvOC1UJuoc-pHSb-aoi8j3a41xWjEm9j-7neGld5wGvtsN4A6n7DQ2-Cn7bQ8RLsOMUu2GNjx7u_lzgRfhpPQwjPgpDg20-q956j1cZ8TBm5jp2mzzhE7vBbYj4tFvf5PUVxPzq7eAAX8Z1bu3wKngb8QK8Tx_Ru9b6BJ-e7wP0fXl8vTgtzi9Pzhbz88KVSoqi4aTWFhqnaM1LSTSpSN1yp2twVhFbWyql1K1wirV577SktFaqaYhqaiH4Afq2y93E8GOCNJq-Sy43sAOEKRlW6kproUqZ0a__oLdhikNuZ5ggmjGmOM3UbEe5GFKK0JpN7Hobt4YS8yTIPAkyr4Lyhy_PsVPdQ_OKvxjJgN4Bv7KU7X_izPzi7Phv-CN_VJ_c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509222731</pqid></control><display><type>article</type><title>A Facile Synthesized Polymer Featuring B‐N Covalent Bond and Small Singlet‐Triplet Gap for High‐Performance Organic Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pang, Shuting ; Wang, Zhiqiang ; Yuan, Xiyue ; Pan, Langheng ; Deng, Wanyuan ; Tang, Haoran ; Wu, Hongbin ; Chen, Shanshan ; Duan, Chunhui ; Huang, Fei ; Cao, Yong</creator><creatorcontrib>Pang, Shuting ; Wang, Zhiqiang ; Yuan, Xiyue ; Pan, Langheng ; Deng, Wanyuan ; Tang, Haoran ; Wu, Hongbin ; Chen, Shanshan ; Duan, Chunhui ; Huang, Fei ; Cao, Yong</creatorcontrib><description>High‐efficiency organic solar cells (OSCs) largely rely on polymer donors. Herein, we report a new building block BNT and a relevant polymer PBNT‐BDD featuring B‐N covalent bond for application in OSCs. The BNT unit is synthesized in only 3 steps, leading to the facile synthesis of PBNT‐BDD. When blended with a nonfullerene acceptor Y6‐BO, PBNT‐BDD afforded a power conversion efficiency (PCE) of 16.1 % in an OSC, comparable to the benzo[1,2‐b:4,5‐b′]dithiophene (BDT)‐based counterpart. The nonradiative recombination energy loss of 0.19 eV was afforded by PBNT‐BDD. PBNT‐BDD also exhibited weak crystallinity and appropriate miscibility with Y6‐BO, benefitting of morphological stability. The singlet–triplet gap (ΔEST) of PBNT‐BDD is as low as 0.15 eV, which is much lower than those of common organic semiconductors (≥0.6 eV). As a result, the triplet state of PBNT‐BDD is higher than the charge transfer (CT) state, which would suppress the recombination via triplet state effectively. An easily synthesized building block BNT and a relevant polymer PBNT‐BDD featuring B‐N covalent bond were synthesized for application in solar cells. The polymer offered a power conversion efficiency of 16.1 %, a nonradiative recombination energy loss of 0.19 eV, and a singlet‐triplet gap as low as 0.15 eV, demonstrating the promising prospect of B‐N‐containing materials in organic photovoltaics.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202016265</identifier><identifier>PMID: 33682269</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Atomic energy levels ; B-N covalent bonds ; Charge transfer ; Chemical bonds ; Covalent bonds ; Electronics industry ; Energy conversion efficiency ; Energy dissipation ; Energy loss ; Miscibility ; Organic semiconductors ; organic solar cells ; Photovoltaic cells ; polymer donor ; Polymers ; Recombination ; Solar cells ; Triplet state</subject><ispartof>Angewandte Chemie International Edition, 2021-04, Vol.60 (16), p.8813-8817</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4765-d30b9aedc71b34609080bf3c9beca70aba16669f5c72ff3cc9611b77dd07db553</citedby><cites>FETCH-LOGICAL-c4765-d30b9aedc71b34609080bf3c9beca70aba16669f5c72ff3cc9611b77dd07db553</cites><orcidid>0000-0003-2770-6188 ; 0000-0002-2140-0009 ; 0000-0001-9665-6642 ; 0000-0002-6521-2149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202016265$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202016265$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33682269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pang, Shuting</creatorcontrib><creatorcontrib>Wang, Zhiqiang</creatorcontrib><creatorcontrib>Yuan, Xiyue</creatorcontrib><creatorcontrib>Pan, Langheng</creatorcontrib><creatorcontrib>Deng, Wanyuan</creatorcontrib><creatorcontrib>Tang, Haoran</creatorcontrib><creatorcontrib>Wu, Hongbin</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Duan, Chunhui</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><title>A Facile Synthesized Polymer Featuring B‐N Covalent Bond and Small Singlet‐Triplet Gap for High‐Performance Organic Solar Cells</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>High‐efficiency organic solar cells (OSCs) largely rely on polymer donors. Herein, we report a new building block BNT and a relevant polymer PBNT‐BDD featuring B‐N covalent bond for application in OSCs. The BNT unit is synthesized in only 3 steps, leading to the facile synthesis of PBNT‐BDD. When blended with a nonfullerene acceptor Y6‐BO, PBNT‐BDD afforded a power conversion efficiency (PCE) of 16.1 % in an OSC, comparable to the benzo[1,2‐b:4,5‐b′]dithiophene (BDT)‐based counterpart. The nonradiative recombination energy loss of 0.19 eV was afforded by PBNT‐BDD. PBNT‐BDD also exhibited weak crystallinity and appropriate miscibility with Y6‐BO, benefitting of morphological stability. The singlet–triplet gap (ΔEST) of PBNT‐BDD is as low as 0.15 eV, which is much lower than those of common organic semiconductors (≥0.6 eV). As a result, the triplet state of PBNT‐BDD is higher than the charge transfer (CT) state, which would suppress the recombination via triplet state effectively. An easily synthesized building block BNT and a relevant polymer PBNT‐BDD featuring B‐N covalent bond were synthesized for application in solar cells. The polymer offered a power conversion efficiency of 16.1 %, a nonradiative recombination energy loss of 0.19 eV, and a singlet‐triplet gap as low as 0.15 eV, demonstrating the promising prospect of B‐N‐containing materials in organic photovoltaics.</description><subject>Atomic energy levels</subject><subject>B-N covalent bonds</subject><subject>Charge transfer</subject><subject>Chemical bonds</subject><subject>Covalent bonds</subject><subject>Electronics industry</subject><subject>Energy conversion efficiency</subject><subject>Energy dissipation</subject><subject>Energy loss</subject><subject>Miscibility</subject><subject>Organic semiconductors</subject><subject>organic solar cells</subject><subject>Photovoltaic cells</subject><subject>polymer donor</subject><subject>Polymers</subject><subject>Recombination</subject><subject>Solar cells</subject><subject>Triplet state</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LHDEYh0Npqdb22mMJ9NLLrPkzSSbHdXFVEBXWnkMm8846kplsk5mW7cmL935GP4mRVQu99BDy5uXJjx88CH2mZEYJYYd26GDGCCNUMineoH0qGC24UvxtnkvOC1UJuoc-pHSb-aoi8j3a41xWjEm9j-7neGld5wGvtsN4A6n7DQ2-Cn7bQ8RLsOMUu2GNjx7u_lzgRfhpPQwjPgpDg20-q956j1cZ8TBm5jp2mzzhE7vBbYj4tFvf5PUVxPzq7eAAX8Z1bu3wKngb8QK8Tx_Ru9b6BJ-e7wP0fXl8vTgtzi9Pzhbz88KVSoqi4aTWFhqnaM1LSTSpSN1yp2twVhFbWyql1K1wirV577SktFaqaYhqaiH4Afq2y93E8GOCNJq-Sy43sAOEKRlW6kproUqZ0a__oLdhikNuZ5ggmjGmOM3UbEe5GFKK0JpN7Hobt4YS8yTIPAkyr4Lyhy_PsVPdQ_OKvxjJgN4Bv7KU7X_izPzi7Phv-CN_VJ_c</recordid><startdate>20210412</startdate><enddate>20210412</enddate><creator>Pang, Shuting</creator><creator>Wang, Zhiqiang</creator><creator>Yuan, Xiyue</creator><creator>Pan, Langheng</creator><creator>Deng, Wanyuan</creator><creator>Tang, Haoran</creator><creator>Wu, Hongbin</creator><creator>Chen, Shanshan</creator><creator>Duan, Chunhui</creator><creator>Huang, Fei</creator><creator>Cao, Yong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2770-6188</orcidid><orcidid>https://orcid.org/0000-0002-2140-0009</orcidid><orcidid>https://orcid.org/0000-0001-9665-6642</orcidid><orcidid>https://orcid.org/0000-0002-6521-2149</orcidid></search><sort><creationdate>20210412</creationdate><title>A Facile Synthesized Polymer Featuring B‐N Covalent Bond and Small Singlet‐Triplet Gap for High‐Performance Organic Solar Cells</title><author>Pang, Shuting ; Wang, Zhiqiang ; Yuan, Xiyue ; Pan, Langheng ; Deng, Wanyuan ; Tang, Haoran ; Wu, Hongbin ; Chen, Shanshan ; Duan, Chunhui ; Huang, Fei ; Cao, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4765-d30b9aedc71b34609080bf3c9beca70aba16669f5c72ff3cc9611b77dd07db553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic energy levels</topic><topic>B-N covalent bonds</topic><topic>Charge transfer</topic><topic>Chemical bonds</topic><topic>Covalent bonds</topic><topic>Electronics industry</topic><topic>Energy conversion efficiency</topic><topic>Energy dissipation</topic><topic>Energy loss</topic><topic>Miscibility</topic><topic>Organic semiconductors</topic><topic>organic solar cells</topic><topic>Photovoltaic cells</topic><topic>polymer donor</topic><topic>Polymers</topic><topic>Recombination</topic><topic>Solar cells</topic><topic>Triplet state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Shuting</creatorcontrib><creatorcontrib>Wang, Zhiqiang</creatorcontrib><creatorcontrib>Yuan, Xiyue</creatorcontrib><creatorcontrib>Pan, Langheng</creatorcontrib><creatorcontrib>Deng, Wanyuan</creatorcontrib><creatorcontrib>Tang, Haoran</creatorcontrib><creatorcontrib>Wu, Hongbin</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Duan, Chunhui</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Shuting</au><au>Wang, Zhiqiang</au><au>Yuan, Xiyue</au><au>Pan, Langheng</au><au>Deng, Wanyuan</au><au>Tang, Haoran</au><au>Wu, Hongbin</au><au>Chen, Shanshan</au><au>Duan, Chunhui</au><au>Huang, Fei</au><au>Cao, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Facile Synthesized Polymer Featuring B‐N Covalent Bond and Small Singlet‐Triplet Gap for High‐Performance Organic Solar Cells</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-04-12</date><risdate>2021</risdate><volume>60</volume><issue>16</issue><spage>8813</spage><epage>8817</epage><pages>8813-8817</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>High‐efficiency organic solar cells (OSCs) largely rely on polymer donors. Herein, we report a new building block BNT and a relevant polymer PBNT‐BDD featuring B‐N covalent bond for application in OSCs. The BNT unit is synthesized in only 3 steps, leading to the facile synthesis of PBNT‐BDD. When blended with a nonfullerene acceptor Y6‐BO, PBNT‐BDD afforded a power conversion efficiency (PCE) of 16.1 % in an OSC, comparable to the benzo[1,2‐b:4,5‐b′]dithiophene (BDT)‐based counterpart. The nonradiative recombination energy loss of 0.19 eV was afforded by PBNT‐BDD. PBNT‐BDD also exhibited weak crystallinity and appropriate miscibility with Y6‐BO, benefitting of morphological stability. The singlet–triplet gap (ΔEST) of PBNT‐BDD is as low as 0.15 eV, which is much lower than those of common organic semiconductors (≥0.6 eV). As a result, the triplet state of PBNT‐BDD is higher than the charge transfer (CT) state, which would suppress the recombination via triplet state effectively. An easily synthesized building block BNT and a relevant polymer PBNT‐BDD featuring B‐N covalent bond were synthesized for application in solar cells. The polymer offered a power conversion efficiency of 16.1 %, a nonradiative recombination energy loss of 0.19 eV, and a singlet‐triplet gap as low as 0.15 eV, demonstrating the promising prospect of B‐N‐containing materials in organic photovoltaics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33682269</pmid><doi>10.1002/anie.202016265</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-2770-6188</orcidid><orcidid>https://orcid.org/0000-0002-2140-0009</orcidid><orcidid>https://orcid.org/0000-0001-9665-6642</orcidid><orcidid>https://orcid.org/0000-0002-6521-2149</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2021-04, Vol.60 (16), p.8813-8817
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2498995746
source Wiley Online Library Journals Frontfile Complete
subjects Atomic energy levels
B-N covalent bonds
Charge transfer
Chemical bonds
Covalent bonds
Electronics industry
Energy conversion efficiency
Energy dissipation
Energy loss
Miscibility
Organic semiconductors
organic solar cells
Photovoltaic cells
polymer donor
Polymers
Recombination
Solar cells
Triplet state
title A Facile Synthesized Polymer Featuring B‐N Covalent Bond and Small Singlet‐Triplet Gap for High‐Performance Organic Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Facile%20Synthesized%20Polymer%20Featuring%20B%E2%80%90N%20Covalent%20Bond%20and%20Small%20Singlet%E2%80%90Triplet%20Gap%20for%20High%E2%80%90Performance%20Organic%20Solar%20Cells&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Pang,%20Shuting&rft.date=2021-04-12&rft.volume=60&rft.issue=16&rft.spage=8813&rft.epage=8817&rft.pages=8813-8817&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202016265&rft_dat=%3Cproquest_cross%3E2509222731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509222731&rft_id=info:pmid/33682269&rfr_iscdi=true