Fabrication of target specific solid-state optical sensors using chromoionophoric probe–integrated porous monolithic polymer and silica templates for cobalt ions
The article demonstrates the design of two solid-state sensors for the capturing of industrially relevant ultra-trace Co(II) ions using porous monolithic silica and polymer templates. The mesoporous silica reveals high surface area and voluminous pore dimensions that ensures homogeneous anchoring of...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2021-05, Vol.413 (12), p.3177-3191 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3191 |
---|---|
container_issue | 12 |
container_start_page | 3177 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 413 |
creator | Sompalli, Naveen Kumar Deivasigamani, Prabhakaran |
description | The article demonstrates the design of two solid-state sensors for the capturing of industrially relevant ultra-trace Co(II) ions using porous monolithic silica and polymer templates. The mesoporous silica reveals high surface area and voluminous pore dimensions that ensures homogeneous anchoring of 4-((5-(allylthio)-1,3,4-thiadiazol-2-yl)diazenyl)benzene-1,3-diol, as the chromoionophore. We report a first of its kind solid-state macro-/meso-porous polymer monolithic optical sensor from a monomeric chromoionophore, i.e., 2-(4-butylphenyl)diazenyl)-2-hydroxybenzylidene)hydrazine-1-carbothioamide. The monolithic solid-state sensors are characterized using HR-TEM-SAED, FE-SEM-EDAX, p-XRD, XPS,
29
Si/
13
C CPMAS NMR, FT-IR, TGA, and BET/BJH analysis. The electron microscopic images reveal a highly ordered hexagonal mesoporous network of honeycomb pattern for silica monolith, and a long-range macroporous framework with mesoporous channels for polymer monolith. The sensors offer exclusive ion-selectivity and sensitivity for trace cobalt ions, through a concentration proportionate visual color transition, with a response kinetics of ≤ 5 min. The optimization of ion-sensing performance reveals an excellent detection limit of 0.29 and 0.15 ppb for Co(II), using silica- and polymer-based monolithic sensors, respectively. The proposed sensors are tested with industrial wastewater and spent Li-ion batteries, which reveals a superior cobalt ion capturing efficiency of ≥ 99.2% (RSD: ≤ 2.07%).
Graphical abstract |
doi_str_mv | 10.1007/s00216-021-03255-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2498991927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2498991927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-3979e2606411df26c9527eab1768ffb60dec899727fb4637b3914ff012438cf93</originalsourceid><addsrcrecordid>eNp9kbFu1TAUhiNUREvhBRiQJRaWUB8nsZMRVZQiVWIps-U49r2unDj4OEM33oFH6JvxJJxyS5EYutiW_P2fj_VX1RvgH4BzdYacC5A1LTVvRNfV8Kw6AQl9LWTHjx7PrTiuXiLecA5dD_JFddw0UinZwUl1d2HGHKwpIS0seVZM3rnCcHU2-GAZphimGospjqW1EBkZugVTRrZhWHbM7nOaE8XTuk-kYmtOo_v142dYittlCk5sTTltyGaCYij7eyjF29llZpaJYYjkZcXNayQcmU-Z2TSaWBh58VX13JuI7vXDflp9u_h0fX5ZX339_OX841VtWxClbgY1OCG5bAEmL6QdOqGcGUHJ3vtR8snZfhiUUH5sZaPGZoDWew6ibXrrh-a0en_w0g--bw6LngNaF6NZHI2vRTtQHgahCH33H3qTtrzQdFp00Pddx9uWKHGgbE6I2Xm95jCbfKuB6_sK9aFCTYv-U6EGCr19UG_j7KbHyN_OCGgOANLVsnP539tPaH8DogCrWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518855044</pqid></control><display><type>article</type><title>Fabrication of target specific solid-state optical sensors using chromoionophoric probe–integrated porous monolithic polymer and silica templates for cobalt ions</title><source>SpringerLink Journals</source><creator>Sompalli, Naveen Kumar ; Deivasigamani, Prabhakaran</creator><creatorcontrib>Sompalli, Naveen Kumar ; Deivasigamani, Prabhakaran</creatorcontrib><description>The article demonstrates the design of two solid-state sensors for the capturing of industrially relevant ultra-trace Co(II) ions using porous monolithic silica and polymer templates. The mesoporous silica reveals high surface area and voluminous pore dimensions that ensures homogeneous anchoring of 4-((5-(allylthio)-1,3,4-thiadiazol-2-yl)diazenyl)benzene-1,3-diol, as the chromoionophore. We report a first of its kind solid-state macro-/meso-porous polymer monolithic optical sensor from a monomeric chromoionophore, i.e., 2-(4-butylphenyl)diazenyl)-2-hydroxybenzylidene)hydrazine-1-carbothioamide. The monolithic solid-state sensors are characterized using HR-TEM-SAED, FE-SEM-EDAX, p-XRD, XPS,
29
Si/
13
C CPMAS NMR, FT-IR, TGA, and BET/BJH analysis. The electron microscopic images reveal a highly ordered hexagonal mesoporous network of honeycomb pattern for silica monolith, and a long-range macroporous framework with mesoporous channels for polymer monolith. The sensors offer exclusive ion-selectivity and sensitivity for trace cobalt ions, through a concentration proportionate visual color transition, with a response kinetics of ≤ 5 min. The optimization of ion-sensing performance reveals an excellent detection limit of 0.29 and 0.15 ppb for Co(II), using silica- and polymer-based monolithic sensors, respectively. The proposed sensors are tested with industrial wastewater and spent Li-ion batteries, which reveals a superior cobalt ion capturing efficiency of ≥ 99.2% (RSD: ≤ 2.07%).
Graphical abstract</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-021-03255-1</identifier><identifier>PMID: 33677651</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Benzene ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Cobalt ; Fabrication ; Food Science ; Hydrazine ; Hydrazines ; Industrial wastes ; Industrial wastewater ; Ions ; Laboratory Medicine ; Lithium-ion batteries ; Monitoring/Environmental Analysis ; NMR ; Nuclear magnetic resonance ; Optical measuring instruments ; Optimization ; Polymers ; Rechargeable batteries ; Research Paper ; Selectivity ; Sensors ; Silica ; Silicon dioxide ; Solid state ; Wastewater ; X ray photoelectron spectroscopy</subject><ispartof>Analytical and bioanalytical chemistry, 2021-05, Vol.413 (12), p.3177-3191</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-3979e2606411df26c9527eab1768ffb60dec899727fb4637b3914ff012438cf93</citedby><cites>FETCH-LOGICAL-c412t-3979e2606411df26c9527eab1768ffb60dec899727fb4637b3914ff012438cf93</cites><orcidid>0000-0001-7374-0673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-021-03255-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-021-03255-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33677651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sompalli, Naveen Kumar</creatorcontrib><creatorcontrib>Deivasigamani, Prabhakaran</creatorcontrib><title>Fabrication of target specific solid-state optical sensors using chromoionophoric probe–integrated porous monolithic polymer and silica templates for cobalt ions</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>The article demonstrates the design of two solid-state sensors for the capturing of industrially relevant ultra-trace Co(II) ions using porous monolithic silica and polymer templates. The mesoporous silica reveals high surface area and voluminous pore dimensions that ensures homogeneous anchoring of 4-((5-(allylthio)-1,3,4-thiadiazol-2-yl)diazenyl)benzene-1,3-diol, as the chromoionophore. We report a first of its kind solid-state macro-/meso-porous polymer monolithic optical sensor from a monomeric chromoionophore, i.e., 2-(4-butylphenyl)diazenyl)-2-hydroxybenzylidene)hydrazine-1-carbothioamide. The monolithic solid-state sensors are characterized using HR-TEM-SAED, FE-SEM-EDAX, p-XRD, XPS,
29
Si/
13
C CPMAS NMR, FT-IR, TGA, and BET/BJH analysis. The electron microscopic images reveal a highly ordered hexagonal mesoporous network of honeycomb pattern for silica monolith, and a long-range macroporous framework with mesoporous channels for polymer monolith. The sensors offer exclusive ion-selectivity and sensitivity for trace cobalt ions, through a concentration proportionate visual color transition, with a response kinetics of ≤ 5 min. The optimization of ion-sensing performance reveals an excellent detection limit of 0.29 and 0.15 ppb for Co(II), using silica- and polymer-based monolithic sensors, respectively. The proposed sensors are tested with industrial wastewater and spent Li-ion batteries, which reveals a superior cobalt ion capturing efficiency of ≥ 99.2% (RSD: ≤ 2.07%).
Graphical abstract</description><subject>Analytical Chemistry</subject><subject>Benzene</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Fabrication</subject><subject>Food Science</subject><subject>Hydrazine</subject><subject>Hydrazines</subject><subject>Industrial wastes</subject><subject>Industrial wastewater</subject><subject>Ions</subject><subject>Laboratory Medicine</subject><subject>Lithium-ion batteries</subject><subject>Monitoring/Environmental Analysis</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optical measuring instruments</subject><subject>Optimization</subject><subject>Polymers</subject><subject>Rechargeable batteries</subject><subject>Research Paper</subject><subject>Selectivity</subject><subject>Sensors</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Solid state</subject><subject>Wastewater</subject><subject>X ray photoelectron spectroscopy</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kbFu1TAUhiNUREvhBRiQJRaWUB8nsZMRVZQiVWIps-U49r2unDj4OEM33oFH6JvxJJxyS5EYutiW_P2fj_VX1RvgH4BzdYacC5A1LTVvRNfV8Kw6AQl9LWTHjx7PrTiuXiLecA5dD_JFddw0UinZwUl1d2HGHKwpIS0seVZM3rnCcHU2-GAZphimGospjqW1EBkZugVTRrZhWHbM7nOaE8XTuk-kYmtOo_v142dYittlCk5sTTltyGaCYij7eyjF29llZpaJYYjkZcXNayQcmU-Z2TSaWBh58VX13JuI7vXDflp9u_h0fX5ZX339_OX841VtWxClbgY1OCG5bAEmL6QdOqGcGUHJ3vtR8snZfhiUUH5sZaPGZoDWew6ibXrrh-a0en_w0g--bw6LngNaF6NZHI2vRTtQHgahCH33H3qTtrzQdFp00Pddx9uWKHGgbE6I2Xm95jCbfKuB6_sK9aFCTYv-U6EGCr19UG_j7KbHyN_OCGgOANLVsnP539tPaH8DogCrWQ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Sompalli, Naveen Kumar</creator><creator>Deivasigamani, Prabhakaran</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7374-0673</orcidid></search><sort><creationdate>20210501</creationdate><title>Fabrication of target specific solid-state optical sensors using chromoionophoric probe–integrated porous monolithic polymer and silica templates for cobalt ions</title><author>Sompalli, Naveen Kumar ; Deivasigamani, Prabhakaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-3979e2606411df26c9527eab1768ffb60dec899727fb4637b3914ff012438cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical Chemistry</topic><topic>Benzene</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Fabrication</topic><topic>Food Science</topic><topic>Hydrazine</topic><topic>Hydrazines</topic><topic>Industrial wastes</topic><topic>Industrial wastewater</topic><topic>Ions</topic><topic>Laboratory Medicine</topic><topic>Lithium-ion batteries</topic><topic>Monitoring/Environmental Analysis</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optical measuring instruments</topic><topic>Optimization</topic><topic>Polymers</topic><topic>Rechargeable batteries</topic><topic>Research Paper</topic><topic>Selectivity</topic><topic>Sensors</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Solid state</topic><topic>Wastewater</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sompalli, Naveen Kumar</creatorcontrib><creatorcontrib>Deivasigamani, Prabhakaran</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sompalli, Naveen Kumar</au><au>Deivasigamani, Prabhakaran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of target specific solid-state optical sensors using chromoionophoric probe–integrated porous monolithic polymer and silica templates for cobalt ions</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>413</volume><issue>12</issue><spage>3177</spage><epage>3191</epage><pages>3177-3191</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>The article demonstrates the design of two solid-state sensors for the capturing of industrially relevant ultra-trace Co(II) ions using porous monolithic silica and polymer templates. The mesoporous silica reveals high surface area and voluminous pore dimensions that ensures homogeneous anchoring of 4-((5-(allylthio)-1,3,4-thiadiazol-2-yl)diazenyl)benzene-1,3-diol, as the chromoionophore. We report a first of its kind solid-state macro-/meso-porous polymer monolithic optical sensor from a monomeric chromoionophore, i.e., 2-(4-butylphenyl)diazenyl)-2-hydroxybenzylidene)hydrazine-1-carbothioamide. The monolithic solid-state sensors are characterized using HR-TEM-SAED, FE-SEM-EDAX, p-XRD, XPS,
29
Si/
13
C CPMAS NMR, FT-IR, TGA, and BET/BJH analysis. The electron microscopic images reveal a highly ordered hexagonal mesoporous network of honeycomb pattern for silica monolith, and a long-range macroporous framework with mesoporous channels for polymer monolith. The sensors offer exclusive ion-selectivity and sensitivity for trace cobalt ions, through a concentration proportionate visual color transition, with a response kinetics of ≤ 5 min. The optimization of ion-sensing performance reveals an excellent detection limit of 0.29 and 0.15 ppb for Co(II), using silica- and polymer-based monolithic sensors, respectively. The proposed sensors are tested with industrial wastewater and spent Li-ion batteries, which reveals a superior cobalt ion capturing efficiency of ≥ 99.2% (RSD: ≤ 2.07%).
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33677651</pmid><doi>10.1007/s00216-021-03255-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7374-0673</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2021-05, Vol.413 (12), p.3177-3191 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_proquest_miscellaneous_2498991927 |
source | SpringerLink Journals |
subjects | Analytical Chemistry Benzene Biochemistry Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Cobalt Fabrication Food Science Hydrazine Hydrazines Industrial wastes Industrial wastewater Ions Laboratory Medicine Lithium-ion batteries Monitoring/Environmental Analysis NMR Nuclear magnetic resonance Optical measuring instruments Optimization Polymers Rechargeable batteries Research Paper Selectivity Sensors Silica Silicon dioxide Solid state Wastewater X ray photoelectron spectroscopy |
title | Fabrication of target specific solid-state optical sensors using chromoionophoric probe–integrated porous monolithic polymer and silica templates for cobalt ions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T14%3A03%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20target%20specific%20solid-state%20optical%20sensors%20using%20chromoionophoric%20probe%E2%80%93integrated%20porous%20monolithic%20polymer%20and%20silica%20templates%20for%20cobalt%20ions&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Sompalli,%20Naveen%20Kumar&rft.date=2021-05-01&rft.volume=413&rft.issue=12&rft.spage=3177&rft.epage=3191&rft.pages=3177-3191&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-021-03255-1&rft_dat=%3Cproquest_cross%3E2498991927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518855044&rft_id=info:pmid/33677651&rfr_iscdi=true |