Observable removal of pharmaceutical residues by highly porous photoactive cellulose acetate@MIL-MOF film
Pharmaceutical products are used tremendously worldwide and subsequently released into wastewater even at very low concentration caused serious environmental problem due to their high activity. Therefore, the present work focuses on remarkable removal of paracetamol as one from the most used pharmac...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2021-07, Vol.414, p.125509-125509, Article 125509 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pharmaceutical products are used tremendously worldwide and subsequently released into wastewater even at very low concentration caused serious environmental problem due to their high activity. Therefore, the present work focuses on remarkable removal of paracetamol as one from the most used pharmaceutical intermediates, by using porous film based on cellulose acetate@metal organic framework (CA@Ti-MIL-NH2). The film was designed to achieve extreme removal of paracetamol by action of both of adsorption and degradation. Metal organic frame work was directly synthesized and inserted within the pre-prepared porous CA film to obtain porous CA@Ti-MIL-NH2 film. The synthesized films were applied in adsorption and photo-degradation of paracetamol separately and together. Due to the photocatalytic activity of Ti-MIL-NH2, the photo-degradation of paracetamol in visible-light was much effective and considerably high degradation of paracetamol was observed (k1 = 760.0 m−1) comparing to the adsorption (k1 = 160.0 m−1). The overall removal of paracetamol was significantly enlarged from 82.7 mg/g for CA film to 519.1 mg/g for porous CA@Ti-MIL-NH2 film. The used film exhibited quite good reusability and the removal of paracetamol was lowered from 96% to 85% after 5 regeneration cycles. Results of total organic carbon confirmed that paracetamol was fully degraded to CO2 and water.
[Display omitted]
•Porous photoactive film of CA@Ti-MIL-NH2 was prepared.•The synthesized film was applied in paracetamol adsorption and photo-degradation.•Photo-degradation of paracetamol was much effective compared to adsorption.•Total removal was enlarged from 82.7 mg/g for CA to 519.1 mg/g for CA@Ti-MIL-NH2.•After 5 reusing cycles, removal of paracetamol was lowered from 96% to 85%. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2021.125509 |