Soft Electrochemical Actuators with a Two-Dimensional Conductive Metal–Organic Framework Nanowire Array

Electrically activated soft actuators capable of large deformation are powerful and broadly applicable in multiple fields. However, designing soft actuators that can withstand a high strain, provide a large actuation displacement, and exhibit stable reversibility are still the main challenges toward...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-03, Vol.143 (10), p.4017-4023
Hauptverfasser: Shi, Yi-Xiang, Wu, Yue, Wang, Shu-Qi, Zhao, Yang-Yong, Li, Tie, Yang, Xian-Qing, Zhang, Ting
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4023
container_issue 10
container_start_page 4017
container_title Journal of the American Chemical Society
container_volume 143
creator Shi, Yi-Xiang
Wu, Yue
Wang, Shu-Qi
Zhao, Yang-Yong
Li, Tie
Yang, Xian-Qing
Zhang, Ting
description Electrically activated soft actuators capable of large deformation are powerful and broadly applicable in multiple fields. However, designing soft actuators that can withstand a high strain, provide a large actuation displacement, and exhibit stable reversibility are still the main challenges toward their practical application. Here, for the first time, we report a two-dimensional (2D) conductive metal–organic framework (MOF) based electrochemical actuator, which consists of vertically oriented and hierarchical Ni-CAT NWAs/CNF electrodes through the use of a facile one-step in situ hydrothermal growth method. The soft actuator prepared in this study demonstrated improvements in actuation performance and benefits from both the intrinsically ordered porous architecture and efficient transfer pathways for fast ion and electron transport; furthermore, this actuator facilitated a considerably high diffusion rate and low interfacial resistance. In particular, the actuator demonstrated a rapid response (
doi_str_mv 10.1021/jacs.1c00666
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2498483697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2498483697</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-977209b976d2f7306c7d023251d3a536e57a6ce42d7a1e787ff02225f7908653</originalsourceid><addsrcrecordid>eNptkLtOwzAUQC0EoqWwMSOPDAT8SOxkrEoLSDwGukfGuaEuSVxsh6gb_8Af8iWkosDCdHWlc8-VDkLHlJxTwujFUml_TjUhQogdNKQJI1FCmdhFQ0IIi2Qq-AAdeL_s15ildB8NOBeCMyqHyDzaMuBpBTo4qxdQG60qPNahVcE6jzsTFljheWejS1ND441temBim6LVwbwBvoOgqs_3jwf3rBqj8cypGjrrXvC9amxnHOCxc2p9iPZKVXk42s4Rms-m88l1dPtwdTMZ30aKszhEmZSMZE-ZFAUrJSdCy4IwzhJacJVwAYlUQkPMCqkoyFSWJWGMJaXMSCoSPkKn39qVs68t-JDXxmuoKtWAbX3O4iyNUy4y2aNn36h21nsHZb5yplZunVOSb9rmm7b5tm2Pn2zN7VMNxS_8E_Pv9eZqaVvXl_L_u74Ah9yDEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498483697</pqid></control><display><type>article</type><title>Soft Electrochemical Actuators with a Two-Dimensional Conductive Metal–Organic Framework Nanowire Array</title><source>ACS Publications</source><creator>Shi, Yi-Xiang ; Wu, Yue ; Wang, Shu-Qi ; Zhao, Yang-Yong ; Li, Tie ; Yang, Xian-Qing ; Zhang, Ting</creator><creatorcontrib>Shi, Yi-Xiang ; Wu, Yue ; Wang, Shu-Qi ; Zhao, Yang-Yong ; Li, Tie ; Yang, Xian-Qing ; Zhang, Ting</creatorcontrib><description>Electrically activated soft actuators capable of large deformation are powerful and broadly applicable in multiple fields. However, designing soft actuators that can withstand a high strain, provide a large actuation displacement, and exhibit stable reversibility are still the main challenges toward their practical application. Here, for the first time, we report a two-dimensional (2D) conductive metal–organic framework (MOF) based electrochemical actuator, which consists of vertically oriented and hierarchical Ni-CAT NWAs/CNF electrodes through the use of a facile one-step in situ hydrothermal growth method. The soft actuator prepared in this study demonstrated improvements in actuation performance and benefits from both the intrinsically ordered porous architecture and efficient transfer pathways for fast ion and electron transport; furthermore, this actuator facilitated a considerably high diffusion rate and low interfacial resistance. In particular, the actuator demonstrated a rapid response (&lt;19 s) at a 3 V DC input, large actuation displacement (12.1 mm), and a correspondingly high strain of 0.36% under a square-wave AC voltage of ±3 V. Specifically, the actuator achieved a broad-band frequency response (0.1–20 Hz) and long-term cyclability in air (10000 cycles) with a negligible degradation in actuation performance. Our work demonstrates new opportunities for bioinspired artificial actuators and overcomes current limitations in electrode materials for soft robotics and bionics.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c00666</identifier><identifier>PMID: 33663217</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2021-03, Vol.143 (10), p.4017-4023</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-977209b976d2f7306c7d023251d3a536e57a6ce42d7a1e787ff02225f7908653</citedby><cites>FETCH-LOGICAL-a324t-977209b976d2f7306c7d023251d3a536e57a6ce42d7a1e787ff02225f7908653</cites><orcidid>0000-0001-5008-2081 ; 0000-0003-4071-1598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c00666$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c00666$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33663217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Yi-Xiang</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Wang, Shu-Qi</creatorcontrib><creatorcontrib>Zhao, Yang-Yong</creatorcontrib><creatorcontrib>Li, Tie</creatorcontrib><creatorcontrib>Yang, Xian-Qing</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><title>Soft Electrochemical Actuators with a Two-Dimensional Conductive Metal–Organic Framework Nanowire Array</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Electrically activated soft actuators capable of large deformation are powerful and broadly applicable in multiple fields. However, designing soft actuators that can withstand a high strain, provide a large actuation displacement, and exhibit stable reversibility are still the main challenges toward their practical application. Here, for the first time, we report a two-dimensional (2D) conductive metal–organic framework (MOF) based electrochemical actuator, which consists of vertically oriented and hierarchical Ni-CAT NWAs/CNF electrodes through the use of a facile one-step in situ hydrothermal growth method. The soft actuator prepared in this study demonstrated improvements in actuation performance and benefits from both the intrinsically ordered porous architecture and efficient transfer pathways for fast ion and electron transport; furthermore, this actuator facilitated a considerably high diffusion rate and low interfacial resistance. In particular, the actuator demonstrated a rapid response (&lt;19 s) at a 3 V DC input, large actuation displacement (12.1 mm), and a correspondingly high strain of 0.36% under a square-wave AC voltage of ±3 V. Specifically, the actuator achieved a broad-band frequency response (0.1–20 Hz) and long-term cyclability in air (10000 cycles) with a negligible degradation in actuation performance. Our work demonstrates new opportunities for bioinspired artificial actuators and overcomes current limitations in electrode materials for soft robotics and bionics.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkLtOwzAUQC0EoqWwMSOPDAT8SOxkrEoLSDwGukfGuaEuSVxsh6gb_8Af8iWkosDCdHWlc8-VDkLHlJxTwujFUml_TjUhQogdNKQJI1FCmdhFQ0IIi2Qq-AAdeL_s15ildB8NOBeCMyqHyDzaMuBpBTo4qxdQG60qPNahVcE6jzsTFljheWejS1ND441temBim6LVwbwBvoOgqs_3jwf3rBqj8cypGjrrXvC9amxnHOCxc2p9iPZKVXk42s4Rms-m88l1dPtwdTMZ30aKszhEmZSMZE-ZFAUrJSdCy4IwzhJacJVwAYlUQkPMCqkoyFSWJWGMJaXMSCoSPkKn39qVs68t-JDXxmuoKtWAbX3O4iyNUy4y2aNn36h21nsHZb5yplZunVOSb9rmm7b5tm2Pn2zN7VMNxS_8E_Pv9eZqaVvXl_L_u74Ah9yDEA</recordid><startdate>20210317</startdate><enddate>20210317</enddate><creator>Shi, Yi-Xiang</creator><creator>Wu, Yue</creator><creator>Wang, Shu-Qi</creator><creator>Zhao, Yang-Yong</creator><creator>Li, Tie</creator><creator>Yang, Xian-Qing</creator><creator>Zhang, Ting</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5008-2081</orcidid><orcidid>https://orcid.org/0000-0003-4071-1598</orcidid></search><sort><creationdate>20210317</creationdate><title>Soft Electrochemical Actuators with a Two-Dimensional Conductive Metal–Organic Framework Nanowire Array</title><author>Shi, Yi-Xiang ; Wu, Yue ; Wang, Shu-Qi ; Zhao, Yang-Yong ; Li, Tie ; Yang, Xian-Qing ; Zhang, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-977209b976d2f7306c7d023251d3a536e57a6ce42d7a1e787ff02225f7908653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yi-Xiang</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Wang, Shu-Qi</creatorcontrib><creatorcontrib>Zhao, Yang-Yong</creatorcontrib><creatorcontrib>Li, Tie</creatorcontrib><creatorcontrib>Yang, Xian-Qing</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yi-Xiang</au><au>Wu, Yue</au><au>Wang, Shu-Qi</au><au>Zhao, Yang-Yong</au><au>Li, Tie</au><au>Yang, Xian-Qing</au><au>Zhang, Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft Electrochemical Actuators with a Two-Dimensional Conductive Metal–Organic Framework Nanowire Array</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-03-17</date><risdate>2021</risdate><volume>143</volume><issue>10</issue><spage>4017</spage><epage>4023</epage><pages>4017-4023</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Electrically activated soft actuators capable of large deformation are powerful and broadly applicable in multiple fields. However, designing soft actuators that can withstand a high strain, provide a large actuation displacement, and exhibit stable reversibility are still the main challenges toward their practical application. Here, for the first time, we report a two-dimensional (2D) conductive metal–organic framework (MOF) based electrochemical actuator, which consists of vertically oriented and hierarchical Ni-CAT NWAs/CNF electrodes through the use of a facile one-step in situ hydrothermal growth method. The soft actuator prepared in this study demonstrated improvements in actuation performance and benefits from both the intrinsically ordered porous architecture and efficient transfer pathways for fast ion and electron transport; furthermore, this actuator facilitated a considerably high diffusion rate and low interfacial resistance. In particular, the actuator demonstrated a rapid response (&lt;19 s) at a 3 V DC input, large actuation displacement (12.1 mm), and a correspondingly high strain of 0.36% under a square-wave AC voltage of ±3 V. Specifically, the actuator achieved a broad-band frequency response (0.1–20 Hz) and long-term cyclability in air (10000 cycles) with a negligible degradation in actuation performance. Our work demonstrates new opportunities for bioinspired artificial actuators and overcomes current limitations in electrode materials for soft robotics and bionics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33663217</pmid><doi>10.1021/jacs.1c00666</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5008-2081</orcidid><orcidid>https://orcid.org/0000-0003-4071-1598</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2021-03, Vol.143 (10), p.4017-4023
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2498483697
source ACS Publications
title Soft Electrochemical Actuators with a Two-Dimensional Conductive Metal–Organic Framework Nanowire Array
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20Electrochemical%20Actuators%20with%20a%20Two-Dimensional%20Conductive%20Metal%E2%80%93Organic%20Framework%20Nanowire%20Array&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Shi,%20Yi-Xiang&rft.date=2021-03-17&rft.volume=143&rft.issue=10&rft.spage=4017&rft.epage=4023&rft.pages=4017-4023&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c00666&rft_dat=%3Cproquest_cross%3E2498483697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498483697&rft_id=info:pmid/33663217&rfr_iscdi=true