Soft Electrochemical Actuators with a Two-Dimensional Conductive Metal–Organic Framework Nanowire Array
Electrically activated soft actuators capable of large deformation are powerful and broadly applicable in multiple fields. However, designing soft actuators that can withstand a high strain, provide a large actuation displacement, and exhibit stable reversibility are still the main challenges toward...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2021-03, Vol.143 (10), p.4017-4023 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4023 |
---|---|
container_issue | 10 |
container_start_page | 4017 |
container_title | Journal of the American Chemical Society |
container_volume | 143 |
creator | Shi, Yi-Xiang Wu, Yue Wang, Shu-Qi Zhao, Yang-Yong Li, Tie Yang, Xian-Qing Zhang, Ting |
description | Electrically activated soft actuators capable of large deformation are powerful and broadly applicable in multiple fields. However, designing soft actuators that can withstand a high strain, provide a large actuation displacement, and exhibit stable reversibility are still the main challenges toward their practical application. Here, for the first time, we report a two-dimensional (2D) conductive metal–organic framework (MOF) based electrochemical actuator, which consists of vertically oriented and hierarchical Ni-CAT NWAs/CNF electrodes through the use of a facile one-step in situ hydrothermal growth method. The soft actuator prepared in this study demonstrated improvements in actuation performance and benefits from both the intrinsically ordered porous architecture and efficient transfer pathways for fast ion and electron transport; furthermore, this actuator facilitated a considerably high diffusion rate and low interfacial resistance. In particular, the actuator demonstrated a rapid response ( |
doi_str_mv | 10.1021/jacs.1c00666 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2498483697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2498483697</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-977209b976d2f7306c7d023251d3a536e57a6ce42d7a1e787ff02225f7908653</originalsourceid><addsrcrecordid>eNptkLtOwzAUQC0EoqWwMSOPDAT8SOxkrEoLSDwGukfGuaEuSVxsh6gb_8Af8iWkosDCdHWlc8-VDkLHlJxTwujFUml_TjUhQogdNKQJI1FCmdhFQ0IIi2Qq-AAdeL_s15ildB8NOBeCMyqHyDzaMuBpBTo4qxdQG60qPNahVcE6jzsTFljheWejS1ND441temBim6LVwbwBvoOgqs_3jwf3rBqj8cypGjrrXvC9amxnHOCxc2p9iPZKVXk42s4Rms-m88l1dPtwdTMZ30aKszhEmZSMZE-ZFAUrJSdCy4IwzhJacJVwAYlUQkPMCqkoyFSWJWGMJaXMSCoSPkKn39qVs68t-JDXxmuoKtWAbX3O4iyNUy4y2aNn36h21nsHZb5yplZunVOSb9rmm7b5tm2Pn2zN7VMNxS_8E_Pv9eZqaVvXl_L_u74Ah9yDEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498483697</pqid></control><display><type>article</type><title>Soft Electrochemical Actuators with a Two-Dimensional Conductive Metal–Organic Framework Nanowire Array</title><source>ACS Publications</source><creator>Shi, Yi-Xiang ; Wu, Yue ; Wang, Shu-Qi ; Zhao, Yang-Yong ; Li, Tie ; Yang, Xian-Qing ; Zhang, Ting</creator><creatorcontrib>Shi, Yi-Xiang ; Wu, Yue ; Wang, Shu-Qi ; Zhao, Yang-Yong ; Li, Tie ; Yang, Xian-Qing ; Zhang, Ting</creatorcontrib><description>Electrically activated soft actuators capable of large deformation are powerful and broadly applicable in multiple fields. However, designing soft actuators that can withstand a high strain, provide a large actuation displacement, and exhibit stable reversibility are still the main challenges toward their practical application. Here, for the first time, we report a two-dimensional (2D) conductive metal–organic framework (MOF) based electrochemical actuator, which consists of vertically oriented and hierarchical Ni-CAT NWAs/CNF electrodes through the use of a facile one-step in situ hydrothermal growth method. The soft actuator prepared in this study demonstrated improvements in actuation performance and benefits from both the intrinsically ordered porous architecture and efficient transfer pathways for fast ion and electron transport; furthermore, this actuator facilitated a considerably high diffusion rate and low interfacial resistance. In particular, the actuator demonstrated a rapid response (<19 s) at a 3 V DC input, large actuation displacement (12.1 mm), and a correspondingly high strain of 0.36% under a square-wave AC voltage of ±3 V. Specifically, the actuator achieved a broad-band frequency response (0.1–20 Hz) and long-term cyclability in air (10000 cycles) with a negligible degradation in actuation performance. Our work demonstrates new opportunities for bioinspired artificial actuators and overcomes current limitations in electrode materials for soft robotics and bionics.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c00666</identifier><identifier>PMID: 33663217</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2021-03, Vol.143 (10), p.4017-4023</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-977209b976d2f7306c7d023251d3a536e57a6ce42d7a1e787ff02225f7908653</citedby><cites>FETCH-LOGICAL-a324t-977209b976d2f7306c7d023251d3a536e57a6ce42d7a1e787ff02225f7908653</cites><orcidid>0000-0001-5008-2081 ; 0000-0003-4071-1598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c00666$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c00666$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33663217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Yi-Xiang</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Wang, Shu-Qi</creatorcontrib><creatorcontrib>Zhao, Yang-Yong</creatorcontrib><creatorcontrib>Li, Tie</creatorcontrib><creatorcontrib>Yang, Xian-Qing</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><title>Soft Electrochemical Actuators with a Two-Dimensional Conductive Metal–Organic Framework Nanowire Array</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Electrically activated soft actuators capable of large deformation are powerful and broadly applicable in multiple fields. However, designing soft actuators that can withstand a high strain, provide a large actuation displacement, and exhibit stable reversibility are still the main challenges toward their practical application. Here, for the first time, we report a two-dimensional (2D) conductive metal–organic framework (MOF) based electrochemical actuator, which consists of vertically oriented and hierarchical Ni-CAT NWAs/CNF electrodes through the use of a facile one-step in situ hydrothermal growth method. The soft actuator prepared in this study demonstrated improvements in actuation performance and benefits from both the intrinsically ordered porous architecture and efficient transfer pathways for fast ion and electron transport; furthermore, this actuator facilitated a considerably high diffusion rate and low interfacial resistance. In particular, the actuator demonstrated a rapid response (<19 s) at a 3 V DC input, large actuation displacement (12.1 mm), and a correspondingly high strain of 0.36% under a square-wave AC voltage of ±3 V. Specifically, the actuator achieved a broad-band frequency response (0.1–20 Hz) and long-term cyclability in air (10000 cycles) with a negligible degradation in actuation performance. Our work demonstrates new opportunities for bioinspired artificial actuators and overcomes current limitations in electrode materials for soft robotics and bionics.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkLtOwzAUQC0EoqWwMSOPDAT8SOxkrEoLSDwGukfGuaEuSVxsh6gb_8Af8iWkosDCdHWlc8-VDkLHlJxTwujFUml_TjUhQogdNKQJI1FCmdhFQ0IIi2Qq-AAdeL_s15ildB8NOBeCMyqHyDzaMuBpBTo4qxdQG60qPNahVcE6jzsTFljheWejS1ND441temBim6LVwbwBvoOgqs_3jwf3rBqj8cypGjrrXvC9amxnHOCxc2p9iPZKVXk42s4Rms-m88l1dPtwdTMZ30aKszhEmZSMZE-ZFAUrJSdCy4IwzhJacJVwAYlUQkPMCqkoyFSWJWGMJaXMSCoSPkKn39qVs68t-JDXxmuoKtWAbX3O4iyNUy4y2aNn36h21nsHZb5yplZunVOSb9rmm7b5tm2Pn2zN7VMNxS_8E_Pv9eZqaVvXl_L_u74Ah9yDEA</recordid><startdate>20210317</startdate><enddate>20210317</enddate><creator>Shi, Yi-Xiang</creator><creator>Wu, Yue</creator><creator>Wang, Shu-Qi</creator><creator>Zhao, Yang-Yong</creator><creator>Li, Tie</creator><creator>Yang, Xian-Qing</creator><creator>Zhang, Ting</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5008-2081</orcidid><orcidid>https://orcid.org/0000-0003-4071-1598</orcidid></search><sort><creationdate>20210317</creationdate><title>Soft Electrochemical Actuators with a Two-Dimensional Conductive Metal–Organic Framework Nanowire Array</title><author>Shi, Yi-Xiang ; Wu, Yue ; Wang, Shu-Qi ; Zhao, Yang-Yong ; Li, Tie ; Yang, Xian-Qing ; Zhang, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-977209b976d2f7306c7d023251d3a536e57a6ce42d7a1e787ff02225f7908653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yi-Xiang</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Wang, Shu-Qi</creatorcontrib><creatorcontrib>Zhao, Yang-Yong</creatorcontrib><creatorcontrib>Li, Tie</creatorcontrib><creatorcontrib>Yang, Xian-Qing</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yi-Xiang</au><au>Wu, Yue</au><au>Wang, Shu-Qi</au><au>Zhao, Yang-Yong</au><au>Li, Tie</au><au>Yang, Xian-Qing</au><au>Zhang, Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft Electrochemical Actuators with a Two-Dimensional Conductive Metal–Organic Framework Nanowire Array</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-03-17</date><risdate>2021</risdate><volume>143</volume><issue>10</issue><spage>4017</spage><epage>4023</epage><pages>4017-4023</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Electrically activated soft actuators capable of large deformation are powerful and broadly applicable in multiple fields. However, designing soft actuators that can withstand a high strain, provide a large actuation displacement, and exhibit stable reversibility are still the main challenges toward their practical application. Here, for the first time, we report a two-dimensional (2D) conductive metal–organic framework (MOF) based electrochemical actuator, which consists of vertically oriented and hierarchical Ni-CAT NWAs/CNF electrodes through the use of a facile one-step in situ hydrothermal growth method. The soft actuator prepared in this study demonstrated improvements in actuation performance and benefits from both the intrinsically ordered porous architecture and efficient transfer pathways for fast ion and electron transport; furthermore, this actuator facilitated a considerably high diffusion rate and low interfacial resistance. In particular, the actuator demonstrated a rapid response (<19 s) at a 3 V DC input, large actuation displacement (12.1 mm), and a correspondingly high strain of 0.36% under a square-wave AC voltage of ±3 V. Specifically, the actuator achieved a broad-band frequency response (0.1–20 Hz) and long-term cyclability in air (10000 cycles) with a negligible degradation in actuation performance. Our work demonstrates new opportunities for bioinspired artificial actuators and overcomes current limitations in electrode materials for soft robotics and bionics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33663217</pmid><doi>10.1021/jacs.1c00666</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5008-2081</orcidid><orcidid>https://orcid.org/0000-0003-4071-1598</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2021-03, Vol.143 (10), p.4017-4023 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_2498483697 |
source | ACS Publications |
title | Soft Electrochemical Actuators with a Two-Dimensional Conductive Metal–Organic Framework Nanowire Array |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20Electrochemical%20Actuators%20with%20a%20Two-Dimensional%20Conductive%20Metal%E2%80%93Organic%20Framework%20Nanowire%20Array&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Shi,%20Yi-Xiang&rft.date=2021-03-17&rft.volume=143&rft.issue=10&rft.spage=4017&rft.epage=4023&rft.pages=4017-4023&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c00666&rft_dat=%3Cproquest_cross%3E2498483697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498483697&rft_id=info:pmid/33663217&rfr_iscdi=true |