The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity

Stimulation of adipose tissue thermogenesis is regarded as a promising avenue in the treatment of obesity. However, pharmacologic engagement of this process has proven difficult. Using the Connectivity Map (CMap) approach, we identified the phytochemical hyperforin (HPF) as an anti-obesity agent. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell metabolism 2021-03, Vol.33 (3), p.565-580.e7
Hauptverfasser: Chen, Suzhen, Liu, Xiaoxiao, Peng, Chao, Tan, Chang, Sun, Honglin, Liu, He, Zhang, Yao, Wu, Ping, Cui, Can, Liu, Chuchu, Yang, Di, Li, Zhiqiang, Lu, Junxi, Guan, Jian, Ke, Xisong, Wang, Renxiao, Bo, Xiaohai, Xu, Xiaojun, Han, Junfeng, Liu, Junli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 580.e7
container_issue 3
container_start_page 565
container_title Cell metabolism
container_volume 33
creator Chen, Suzhen
Liu, Xiaoxiao
Peng, Chao
Tan, Chang
Sun, Honglin
Liu, He
Zhang, Yao
Wu, Ping
Cui, Can
Liu, Chuchu
Yang, Di
Li, Zhiqiang
Lu, Junxi
Guan, Jian
Ke, Xisong
Wang, Renxiao
Bo, Xiaohai
Xu, Xiaojun
Han, Junfeng
Liu, Junli
description Stimulation of adipose tissue thermogenesis is regarded as a promising avenue in the treatment of obesity. However, pharmacologic engagement of this process has proven difficult. Using the Connectivity Map (CMap) approach, we identified the phytochemical hyperforin (HPF) as an anti-obesity agent. We found that HPF efficiently promoted thermogenesis by stimulating AMPK and PGC-1α via a Ucp1-dependent pathway. Using LiP-SMap (limited proteolysis-mass spectrometry) combined with a microscale thermophoresis assay and molecular docking analysis, we confirmed dihydrolipoamide S-acetyltransferase (Dlat) as a direct molecular target of HPF. Ablation of Dlat significantly attenuated HPF-mediated adipose tissue browning both in vitro and in vivo. Furthermore, genome-wide association study analysis indicated that a variation in DLAT is significantly associated with obesity in humans. These findings suggest that HPF is a promising lead compound in the pursuit of a pharmacological approach to promote energy expenditure in the treatment of obesity.
doi_str_mv 10.1016/j.cmet.2021.02.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2497079975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497079975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-d3a1203bda1d6808ac4efefcf94f507d49fac209a3f1d6fe29bd24805d6edd5f3</originalsourceid><addsrcrecordid>eNo9kMtu1TAURS0EoqXwAwyQh0wSju08rodVeVUtgkEZW459nPgqiYPtIO7f46sWRmdLZ689WIS8ZVAzYN2HY20WzDUHzmrgNUD_jFwyKXjVNxyel9y2UDVMsAvyKqUjgOiEFC_JhRBd25d4SfLDhHSbTjmYCRdv9Eyn04bRhehXmqMfR4yJ5gnjEkZcMflEy0dbv4WENPuUdqS_vaaafpx1rq6__bijyY-rnv06Uv2nADlQs8eBhqHw-fSavHB6Tvjm6V6Rn58_Pdx8re6_f7m9ub6vjGj6XFmhGQcxWM1sd4CDNg06dMbJxrXQ20Y6bThILVwpOORysLw5QGs7tLZ14oq8f9zdYvi1Y8pq8cngPOsVw54Ub2QPvZR9W6r8sWpiSCmiU1v0i44nxUCdbaujOttWZ9sKuCq2C_TuaX8fFrT_kX96xV_a9H87</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497079975</pqid></control><display><type>article</type><title>The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Suzhen ; Liu, Xiaoxiao ; Peng, Chao ; Tan, Chang ; Sun, Honglin ; Liu, He ; Zhang, Yao ; Wu, Ping ; Cui, Can ; Liu, Chuchu ; Yang, Di ; Li, Zhiqiang ; Lu, Junxi ; Guan, Jian ; Ke, Xisong ; Wang, Renxiao ; Bo, Xiaohai ; Xu, Xiaojun ; Han, Junfeng ; Liu, Junli</creator><creatorcontrib>Chen, Suzhen ; Liu, Xiaoxiao ; Peng, Chao ; Tan, Chang ; Sun, Honglin ; Liu, He ; Zhang, Yao ; Wu, Ping ; Cui, Can ; Liu, Chuchu ; Yang, Di ; Li, Zhiqiang ; Lu, Junxi ; Guan, Jian ; Ke, Xisong ; Wang, Renxiao ; Bo, Xiaohai ; Xu, Xiaojun ; Han, Junfeng ; Liu, Junli</creatorcontrib><description>Stimulation of adipose tissue thermogenesis is regarded as a promising avenue in the treatment of obesity. However, pharmacologic engagement of this process has proven difficult. Using the Connectivity Map (CMap) approach, we identified the phytochemical hyperforin (HPF) as an anti-obesity agent. We found that HPF efficiently promoted thermogenesis by stimulating AMPK and PGC-1α via a Ucp1-dependent pathway. Using LiP-SMap (limited proteolysis-mass spectrometry) combined with a microscale thermophoresis assay and molecular docking analysis, we confirmed dihydrolipoamide S-acetyltransferase (Dlat) as a direct molecular target of HPF. Ablation of Dlat significantly attenuated HPF-mediated adipose tissue browning both in vitro and in vivo. Furthermore, genome-wide association study analysis indicated that a variation in DLAT is significantly associated with obesity in humans. These findings suggest that HPF is a promising lead compound in the pursuit of a pharmacological approach to promote energy expenditure in the treatment of obesity.</description><identifier>ISSN: 1550-4131</identifier><identifier>EISSN: 1932-7420</identifier><identifier>DOI: 10.1016/j.cmet.2021.02.007</identifier><identifier>PMID: 33657393</identifier><language>eng</language><publisher>United States</publisher><subject>Adipose Tissue, Brown - metabolism ; Adipose Tissue, White - metabolism ; AMP-Activated Protein Kinases - metabolism ; Animals ; Binding Sites ; Cold Temperature ; Dihydrolipoyllysine-Residue Acetyltransferase - chemistry ; Dihydrolipoyllysine-Residue Acetyltransferase - metabolism ; Humans ; Hypericum - chemistry ; Hypericum - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Mitochondrial Proteins - chemistry ; Mitochondrial Proteins - metabolism ; Molecular Docking Simulation ; Obesity - drug therapy ; Obesity - metabolism ; Obesity - pathology ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism ; Phloroglucinol - analogs &amp; derivatives ; Phloroglucinol - chemistry ; Phloroglucinol - metabolism ; Phloroglucinol - pharmacology ; Phloroglucinol - therapeutic use ; Signal Transduction - drug effects ; Terpenes - chemistry ; Terpenes - metabolism ; Terpenes - pharmacology ; Terpenes - therapeutic use ; Thermogenesis - drug effects ; Thermogenesis - genetics ; Uncoupling Protein 1 - genetics ; Uncoupling Protein 1 - metabolism ; Up-Regulation - drug effects</subject><ispartof>Cell metabolism, 2021-03, Vol.33 (3), p.565-580.e7</ispartof><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-d3a1203bda1d6808ac4efefcf94f507d49fac209a3f1d6fe29bd24805d6edd5f3</citedby><cites>FETCH-LOGICAL-c347t-d3a1203bda1d6808ac4efefcf94f507d49fac209a3f1d6fe29bd24805d6edd5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33657393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Suzhen</creatorcontrib><creatorcontrib>Liu, Xiaoxiao</creatorcontrib><creatorcontrib>Peng, Chao</creatorcontrib><creatorcontrib>Tan, Chang</creatorcontrib><creatorcontrib>Sun, Honglin</creatorcontrib><creatorcontrib>Liu, He</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Wu, Ping</creatorcontrib><creatorcontrib>Cui, Can</creatorcontrib><creatorcontrib>Liu, Chuchu</creatorcontrib><creatorcontrib>Yang, Di</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Lu, Junxi</creatorcontrib><creatorcontrib>Guan, Jian</creatorcontrib><creatorcontrib>Ke, Xisong</creatorcontrib><creatorcontrib>Wang, Renxiao</creatorcontrib><creatorcontrib>Bo, Xiaohai</creatorcontrib><creatorcontrib>Xu, Xiaojun</creatorcontrib><creatorcontrib>Han, Junfeng</creatorcontrib><creatorcontrib>Liu, Junli</creatorcontrib><title>The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity</title><title>Cell metabolism</title><addtitle>Cell Metab</addtitle><description>Stimulation of adipose tissue thermogenesis is regarded as a promising avenue in the treatment of obesity. However, pharmacologic engagement of this process has proven difficult. Using the Connectivity Map (CMap) approach, we identified the phytochemical hyperforin (HPF) as an anti-obesity agent. We found that HPF efficiently promoted thermogenesis by stimulating AMPK and PGC-1α via a Ucp1-dependent pathway. Using LiP-SMap (limited proteolysis-mass spectrometry) combined with a microscale thermophoresis assay and molecular docking analysis, we confirmed dihydrolipoamide S-acetyltransferase (Dlat) as a direct molecular target of HPF. Ablation of Dlat significantly attenuated HPF-mediated adipose tissue browning both in vitro and in vivo. Furthermore, genome-wide association study analysis indicated that a variation in DLAT is significantly associated with obesity in humans. These findings suggest that HPF is a promising lead compound in the pursuit of a pharmacological approach to promote energy expenditure in the treatment of obesity.</description><subject>Adipose Tissue, Brown - metabolism</subject><subject>Adipose Tissue, White - metabolism</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Cold Temperature</subject><subject>Dihydrolipoyllysine-Residue Acetyltransferase - chemistry</subject><subject>Dihydrolipoyllysine-Residue Acetyltransferase - metabolism</subject><subject>Humans</subject><subject>Hypericum - chemistry</subject><subject>Hypericum - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Obese</subject><subject>Mitochondrial Proteins - chemistry</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Molecular Docking Simulation</subject><subject>Obesity - drug therapy</subject><subject>Obesity - metabolism</subject><subject>Obesity - pathology</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</subject><subject>Phloroglucinol - analogs &amp; derivatives</subject><subject>Phloroglucinol - chemistry</subject><subject>Phloroglucinol - metabolism</subject><subject>Phloroglucinol - pharmacology</subject><subject>Phloroglucinol - therapeutic use</subject><subject>Signal Transduction - drug effects</subject><subject>Terpenes - chemistry</subject><subject>Terpenes - metabolism</subject><subject>Terpenes - pharmacology</subject><subject>Terpenes - therapeutic use</subject><subject>Thermogenesis - drug effects</subject><subject>Thermogenesis - genetics</subject><subject>Uncoupling Protein 1 - genetics</subject><subject>Uncoupling Protein 1 - metabolism</subject><subject>Up-Regulation - drug effects</subject><issn>1550-4131</issn><issn>1932-7420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtu1TAURS0EoqXwAwyQh0wSju08rodVeVUtgkEZW459nPgqiYPtIO7f46sWRmdLZ689WIS8ZVAzYN2HY20WzDUHzmrgNUD_jFwyKXjVNxyel9y2UDVMsAvyKqUjgOiEFC_JhRBd25d4SfLDhHSbTjmYCRdv9Eyn04bRhehXmqMfR4yJ5gnjEkZcMflEy0dbv4WENPuUdqS_vaaafpx1rq6__bijyY-rnv06Uv2nADlQs8eBhqHw-fSavHB6Tvjm6V6Rn58_Pdx8re6_f7m9ub6vjGj6XFmhGQcxWM1sd4CDNg06dMbJxrXQ20Y6bThILVwpOORysLw5QGs7tLZ14oq8f9zdYvi1Y8pq8cngPOsVw54Ub2QPvZR9W6r8sWpiSCmiU1v0i44nxUCdbaujOttWZ9sKuCq2C_TuaX8fFrT_kX96xV_a9H87</recordid><startdate>20210302</startdate><enddate>20210302</enddate><creator>Chen, Suzhen</creator><creator>Liu, Xiaoxiao</creator><creator>Peng, Chao</creator><creator>Tan, Chang</creator><creator>Sun, Honglin</creator><creator>Liu, He</creator><creator>Zhang, Yao</creator><creator>Wu, Ping</creator><creator>Cui, Can</creator><creator>Liu, Chuchu</creator><creator>Yang, Di</creator><creator>Li, Zhiqiang</creator><creator>Lu, Junxi</creator><creator>Guan, Jian</creator><creator>Ke, Xisong</creator><creator>Wang, Renxiao</creator><creator>Bo, Xiaohai</creator><creator>Xu, Xiaojun</creator><creator>Han, Junfeng</creator><creator>Liu, Junli</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210302</creationdate><title>The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity</title><author>Chen, Suzhen ; Liu, Xiaoxiao ; Peng, Chao ; Tan, Chang ; Sun, Honglin ; Liu, He ; Zhang, Yao ; Wu, Ping ; Cui, Can ; Liu, Chuchu ; Yang, Di ; Li, Zhiqiang ; Lu, Junxi ; Guan, Jian ; Ke, Xisong ; Wang, Renxiao ; Bo, Xiaohai ; Xu, Xiaojun ; Han, Junfeng ; Liu, Junli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-d3a1203bda1d6808ac4efefcf94f507d49fac209a3f1d6fe29bd24805d6edd5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adipose Tissue, Brown - metabolism</topic><topic>Adipose Tissue, White - metabolism</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Cold Temperature</topic><topic>Dihydrolipoyllysine-Residue Acetyltransferase - chemistry</topic><topic>Dihydrolipoyllysine-Residue Acetyltransferase - metabolism</topic><topic>Humans</topic><topic>Hypericum - chemistry</topic><topic>Hypericum - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Obese</topic><topic>Mitochondrial Proteins - chemistry</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Molecular Docking Simulation</topic><topic>Obesity - drug therapy</topic><topic>Obesity - metabolism</topic><topic>Obesity - pathology</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</topic><topic>Phloroglucinol - analogs &amp; derivatives</topic><topic>Phloroglucinol - chemistry</topic><topic>Phloroglucinol - metabolism</topic><topic>Phloroglucinol - pharmacology</topic><topic>Phloroglucinol - therapeutic use</topic><topic>Signal Transduction - drug effects</topic><topic>Terpenes - chemistry</topic><topic>Terpenes - metabolism</topic><topic>Terpenes - pharmacology</topic><topic>Terpenes - therapeutic use</topic><topic>Thermogenesis - drug effects</topic><topic>Thermogenesis - genetics</topic><topic>Uncoupling Protein 1 - genetics</topic><topic>Uncoupling Protein 1 - metabolism</topic><topic>Up-Regulation - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Suzhen</creatorcontrib><creatorcontrib>Liu, Xiaoxiao</creatorcontrib><creatorcontrib>Peng, Chao</creatorcontrib><creatorcontrib>Tan, Chang</creatorcontrib><creatorcontrib>Sun, Honglin</creatorcontrib><creatorcontrib>Liu, He</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Wu, Ping</creatorcontrib><creatorcontrib>Cui, Can</creatorcontrib><creatorcontrib>Liu, Chuchu</creatorcontrib><creatorcontrib>Yang, Di</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Lu, Junxi</creatorcontrib><creatorcontrib>Guan, Jian</creatorcontrib><creatorcontrib>Ke, Xisong</creatorcontrib><creatorcontrib>Wang, Renxiao</creatorcontrib><creatorcontrib>Bo, Xiaohai</creatorcontrib><creatorcontrib>Xu, Xiaojun</creatorcontrib><creatorcontrib>Han, Junfeng</creatorcontrib><creatorcontrib>Liu, Junli</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Suzhen</au><au>Liu, Xiaoxiao</au><au>Peng, Chao</au><au>Tan, Chang</au><au>Sun, Honglin</au><au>Liu, He</au><au>Zhang, Yao</au><au>Wu, Ping</au><au>Cui, Can</au><au>Liu, Chuchu</au><au>Yang, Di</au><au>Li, Zhiqiang</au><au>Lu, Junxi</au><au>Guan, Jian</au><au>Ke, Xisong</au><au>Wang, Renxiao</au><au>Bo, Xiaohai</au><au>Xu, Xiaojun</au><au>Han, Junfeng</au><au>Liu, Junli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity</atitle><jtitle>Cell metabolism</jtitle><addtitle>Cell Metab</addtitle><date>2021-03-02</date><risdate>2021</risdate><volume>33</volume><issue>3</issue><spage>565</spage><epage>580.e7</epage><pages>565-580.e7</pages><issn>1550-4131</issn><eissn>1932-7420</eissn><abstract>Stimulation of adipose tissue thermogenesis is regarded as a promising avenue in the treatment of obesity. However, pharmacologic engagement of this process has proven difficult. Using the Connectivity Map (CMap) approach, we identified the phytochemical hyperforin (HPF) as an anti-obesity agent. We found that HPF efficiently promoted thermogenesis by stimulating AMPK and PGC-1α via a Ucp1-dependent pathway. Using LiP-SMap (limited proteolysis-mass spectrometry) combined with a microscale thermophoresis assay and molecular docking analysis, we confirmed dihydrolipoamide S-acetyltransferase (Dlat) as a direct molecular target of HPF. Ablation of Dlat significantly attenuated HPF-mediated adipose tissue browning both in vitro and in vivo. Furthermore, genome-wide association study analysis indicated that a variation in DLAT is significantly associated with obesity in humans. These findings suggest that HPF is a promising lead compound in the pursuit of a pharmacological approach to promote energy expenditure in the treatment of obesity.</abstract><cop>United States</cop><pmid>33657393</pmid><doi>10.1016/j.cmet.2021.02.007</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1550-4131
ispartof Cell metabolism, 2021-03, Vol.33 (3), p.565-580.e7
issn 1550-4131
1932-7420
language eng
recordid cdi_proquest_miscellaneous_2497079975
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Adipose Tissue, Brown - metabolism
Adipose Tissue, White - metabolism
AMP-Activated Protein Kinases - metabolism
Animals
Binding Sites
Cold Temperature
Dihydrolipoyllysine-Residue Acetyltransferase - chemistry
Dihydrolipoyllysine-Residue Acetyltransferase - metabolism
Humans
Hypericum - chemistry
Hypericum - metabolism
Mice
Mice, Inbred C57BL
Mice, Obese
Mitochondrial Proteins - chemistry
Mitochondrial Proteins - metabolism
Molecular Docking Simulation
Obesity - drug therapy
Obesity - metabolism
Obesity - pathology
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism
Phloroglucinol - analogs & derivatives
Phloroglucinol - chemistry
Phloroglucinol - metabolism
Phloroglucinol - pharmacology
Phloroglucinol - therapeutic use
Signal Transduction - drug effects
Terpenes - chemistry
Terpenes - metabolism
Terpenes - pharmacology
Terpenes - therapeutic use
Thermogenesis - drug effects
Thermogenesis - genetics
Uncoupling Protein 1 - genetics
Uncoupling Protein 1 - metabolism
Up-Regulation - drug effects
title The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20phytochemical%20hyperforin%20triggers%20thermogenesis%20in%20adipose%20tissue%20via%20a%20Dlat-AMPK%20signaling%20axis%20to%20curb%20obesity&rft.jtitle=Cell%20metabolism&rft.au=Chen,%20Suzhen&rft.date=2021-03-02&rft.volume=33&rft.issue=3&rft.spage=565&rft.epage=580.e7&rft.pages=565-580.e7&rft.issn=1550-4131&rft.eissn=1932-7420&rft_id=info:doi/10.1016/j.cmet.2021.02.007&rft_dat=%3Cproquest_cross%3E2497079975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497079975&rft_id=info:pmid/33657393&rfr_iscdi=true