Minimum values over the efficient set in multiple objective decision making

In multiple objective decision making (MODM), it is often helpful to provide the decision maker (DM) with bounds on the values of each of the objectives. Ideal solutions are relatively easy to calculate and provide upper bounds on the value of each objective over the set of efficient solutions. Idea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 1988, Vol.36 (3), p.334-338
Hauptverfasser: Reeves, Gary R., Reid, Randall C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 338
container_issue 3
container_start_page 334
container_title European journal of operational research
container_volume 36
creator Reeves, Gary R.
Reid, Randall C.
description In multiple objective decision making (MODM), it is often helpful to provide the decision maker (DM) with bounds on the values of each of the objectives. Ideal solutions are relatively easy to calculate and provide upper bounds on the value of each objective over the set of efficient solutions. Ideal solutions also provide lower bounds on the value of each objective over the ideal set. However, the lower bounds over the set of efficient solutions can be strictly less than the ideal lower bounds, but are, in general, more difficult to determine. Thus MODM procedures which utilize the ideal lower bound may overlook elements of the set of efficient solutions. This study explores the differences between the subset of the set of efficient solutions to a MODM problem bounded by its ideal solutions and the complete efficient set.
doi_str_mv 10.1016/0377-2217(88)90125-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24951167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0377221788901257</els_id><sourcerecordid>24951167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-c700a9af810de4f392c0dbce721f1b51be820a9684ebf04af0547d477d6584ee3</originalsourceid><addsrcrecordid>eNp9kU2L1TAUhoMoeB39By6CiOiievLRJt0IMvg94kbXIU1PnFzbpiZtYf696dzhLlwYODlw8ryHlzeEPGXwmgFr3oBQquKcqZdav2qB8bpS98iBacWrRjdwnxzOyEPyKOcjALCa1Qfy9VuYwriOdLPDipnGDRNdrpGi98EFnBaacaFhouM6LGEekMbuiG4JG9IeXcghljf7O0y_HpMH3g4Zn9z1C_Lzw_sfl5-qq-8fP1--u6qc1O1SOQVgW-s1gx6lFy130HcOFWeedTXrUPMCNFpi50FaD7VUvVSqb-oyQ3FBXpz2zin-KaYXM4bscBjshHHNhsu2ZqxRBXz2D3iMa5qKN8NBMlDNLSRPkEsx54TezCmMNt0YBmaP1-zZmT07o7W5jdfssi8nWcIZ3VmD5Rxjwmw2I6xoynVTirVFKmzYZ6XmvQtphNDmehnLsud3Rm12dvDJTiXZ89ISWA2iLdjbE4Yl3S1gMnn_Iod9SOVLTB_D_03_BdzWpuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204107667</pqid></control><display><type>article</type><title>Minimum values over the efficient set in multiple objective decision making</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Reeves, Gary R. ; Reid, Randall C.</creator><creatorcontrib>Reeves, Gary R. ; Reid, Randall C.</creatorcontrib><description>In multiple objective decision making (MODM), it is often helpful to provide the decision maker (DM) with bounds on the values of each of the objectives. Ideal solutions are relatively easy to calculate and provide upper bounds on the value of each objective over the set of efficient solutions. Ideal solutions also provide lower bounds on the value of each objective over the ideal set. However, the lower bounds over the set of efficient solutions can be strictly less than the ideal lower bounds, but are, in general, more difficult to determine. Thus MODM procedures which utilize the ideal lower bound may overlook elements of the set of efficient solutions. This study explores the differences between the subset of the set of efficient solutions to a MODM problem bounded by its ideal solutions and the complete efficient set.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/0377-2217(88)90125-7</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Decision making ; Exact sciences and technology ; Linear programming ; Mathematical programming ; Multiple ; Multiple criteria programming ; Objectives ; Operational research and scientific management ; Operational research. Management science ; Operations research</subject><ispartof>European journal of operational research, 1988, Vol.36 (3), p.334-338</ispartof><rights>1988</rights><rights>1989 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Sep 1988</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-c700a9af810de4f392c0dbce721f1b51be820a9684ebf04af0547d477d6584ee3</citedby><cites>FETCH-LOGICAL-c489t-c700a9af810de4f392c0dbce721f1b51be820a9684ebf04af0547d477d6584ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0377-2217(88)90125-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7005039$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a36_3ay_3a1988_3ai_3a3_3ap_3a334-338.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Reeves, Gary R.</creatorcontrib><creatorcontrib>Reid, Randall C.</creatorcontrib><title>Minimum values over the efficient set in multiple objective decision making</title><title>European journal of operational research</title><description>In multiple objective decision making (MODM), it is often helpful to provide the decision maker (DM) with bounds on the values of each of the objectives. Ideal solutions are relatively easy to calculate and provide upper bounds on the value of each objective over the set of efficient solutions. Ideal solutions also provide lower bounds on the value of each objective over the ideal set. However, the lower bounds over the set of efficient solutions can be strictly less than the ideal lower bounds, but are, in general, more difficult to determine. Thus MODM procedures which utilize the ideal lower bound may overlook elements of the set of efficient solutions. This study explores the differences between the subset of the set of efficient solutions to a MODM problem bounded by its ideal solutions and the complete efficient set.</description><subject>Applied sciences</subject><subject>Decision making</subject><subject>Exact sciences and technology</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Multiple</subject><subject>Multiple criteria programming</subject><subject>Objectives</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kU2L1TAUhoMoeB39By6CiOiievLRJt0IMvg94kbXIU1PnFzbpiZtYf696dzhLlwYODlw8ryHlzeEPGXwmgFr3oBQquKcqZdav2qB8bpS98iBacWrRjdwnxzOyEPyKOcjALCa1Qfy9VuYwriOdLPDipnGDRNdrpGi98EFnBaacaFhouM6LGEekMbuiG4JG9IeXcghljf7O0y_HpMH3g4Zn9z1C_Lzw_sfl5-qq-8fP1--u6qc1O1SOQVgW-s1gx6lFy130HcOFWeedTXrUPMCNFpi50FaD7VUvVSqb-oyQ3FBXpz2zin-KaYXM4bscBjshHHNhsu2ZqxRBXz2D3iMa5qKN8NBMlDNLSRPkEsx54TezCmMNt0YBmaP1-zZmT07o7W5jdfssi8nWcIZ3VmD5Rxjwmw2I6xoynVTirVFKmzYZ6XmvQtphNDmehnLsud3Rm12dvDJTiXZ89ISWA2iLdjbE4Yl3S1gMnn_Iod9SOVLTB_D_03_BdzWpuM</recordid><startdate>1988</startdate><enddate>1988</enddate><creator>Reeves, Gary R.</creator><creator>Reid, Randall C.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1988</creationdate><title>Minimum values over the efficient set in multiple objective decision making</title><author>Reeves, Gary R. ; Reid, Randall C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-c700a9af810de4f392c0dbce721f1b51be820a9684ebf04af0547d477d6584ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Applied sciences</topic><topic>Decision making</topic><topic>Exact sciences and technology</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Multiple</topic><topic>Multiple criteria programming</topic><topic>Objectives</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reeves, Gary R.</creatorcontrib><creatorcontrib>Reid, Randall C.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reeves, Gary R.</au><au>Reid, Randall C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimum values over the efficient set in multiple objective decision making</atitle><jtitle>European journal of operational research</jtitle><date>1988</date><risdate>1988</risdate><volume>36</volume><issue>3</issue><spage>334</spage><epage>338</epage><pages>334-338</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>In multiple objective decision making (MODM), it is often helpful to provide the decision maker (DM) with bounds on the values of each of the objectives. Ideal solutions are relatively easy to calculate and provide upper bounds on the value of each objective over the set of efficient solutions. Ideal solutions also provide lower bounds on the value of each objective over the ideal set. However, the lower bounds over the set of efficient solutions can be strictly less than the ideal lower bounds, but are, in general, more difficult to determine. Thus MODM procedures which utilize the ideal lower bound may overlook elements of the set of efficient solutions. This study explores the differences between the subset of the set of efficient solutions to a MODM problem bounded by its ideal solutions and the complete efficient set.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0377-2217(88)90125-7</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 1988, Vol.36 (3), p.334-338
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_miscellaneous_24951167
source RePEc; Access via ScienceDirect (Elsevier)
subjects Applied sciences
Decision making
Exact sciences and technology
Linear programming
Mathematical programming
Multiple
Multiple criteria programming
Objectives
Operational research and scientific management
Operational research. Management science
Operations research
title Minimum values over the efficient set in multiple objective decision making
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimum%20values%20over%20the%20efficient%20set%20in%20multiple%20objective%20decision%20making&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Reeves,%20Gary%20R.&rft.date=1988&rft.volume=36&rft.issue=3&rft.spage=334&rft.epage=338&rft.pages=334-338&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/0377-2217(88)90125-7&rft_dat=%3Cproquest_cross%3E24951167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204107667&rft_id=info:pmid/&rft_els_id=0377221788901257&rfr_iscdi=true