Role of AMPK in the protective effects exerted by triiodothyronine in ischemic-reperfused myocardium

Recent studies have provided evidence that triiodothyronine (T3) might play an effective role in the recovery of ischemic myocardium, through the preservation of mitochondrial function and the improvement of energy substrate metabolism. To this respect, it has been suggested that T3 could activate A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular endocrinology 2021-03, Vol.66 (3), p.207-221
Hauptverfasser: Hermann, Romina, Mestre Cordero, Victoria Evangelina, Fernández Pazos, María de las Mercedes, Córdoba, Mailen Florencia, Reznik, Federico Joaquín, Vélez, Débora Elisabet, Fellet, Andrea Lorena, Marina Prendes, María Gabriela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221
container_issue 3
container_start_page 207
container_title Journal of molecular endocrinology
container_volume 66
creator Hermann, Romina
Mestre Cordero, Victoria Evangelina
Fernández Pazos, María de las Mercedes
Córdoba, Mailen Florencia
Reznik, Federico Joaquín
Vélez, Débora Elisabet
Fellet, Andrea Lorena
Marina Prendes, María Gabriela
description Recent studies have provided evidence that triiodothyronine (T3) might play an effective role in the recovery of ischemic myocardium, through the preservation of mitochondrial function and the improvement of energy substrate metabolism. To this respect, it has been suggested that T3 could activate AMP-activated protein kinase (AMPK), the cellular ‘fuel-gauge’ enzyme, although its role has yet to be elucidated. The aim of the present study was to investigate the effects produced by acute treatment with T3 (60 nM) and the pharmacological inhibition of AMPK by compound C on isolated rat left atria subjected to 75 min simulated ischemia-75 min reperfusion. Results showed that T3 increased AMPK activation during simulated ischemia-reperfusion, while compound C prevented it. At the end of simulated reperfusion, acute T3 treatment increased contractile function recovery and cellular viability conservation. Mitochondrial ultrastructure was better preserved in the presence of T3 as well as mitochondrial ATP production rate and tissue ATP content. Calcium retention capacity, a parameter widely used as an indicator of the resistance of mitochondrial permeability transition pore (MPTP) to opening, and GSK-3β phosphorylation, a master switch enzyme that limits MPTP opening, were increased by T3 administration. All these beneficial effects exerted by T3 acute treatment were prevented when compound C was co-administrated. The present study provided original evidence that T3 enhances intrinsic activation of AMPK during myocardial ischemia-reperfusion, being this enzyme involved, at least in part, in the protective effects exerted by T3, contributing to mitochondrial structure and function preservation, post-ischemic contractile recovery and conservation of cellular viability.
doi_str_mv 10.1530/JME-20-0314
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2494876223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494876223</sourcerecordid><originalsourceid>FETCH-LOGICAL-b396t-314094b6715f4cff006b4400b3fc496fd2b2bab1fcf1481683c999849426ff403</originalsourceid><addsrcrecordid>eNp90M9rFDEUB_Agil2rJ-8S8CLI2Jcfk5kcS6la29Iieg6TzAubsjNZk0zp_vfNsq0HD56Sw-d9ee9LyHsGX1gr4OTH9XnDoQHB5AuyYrLTjeqZeElWoFvetCDZEXmT8x0Aa1knX5MjIZSEvuMrMv6MG6TR09Pr20saZlrWSLcpFnQl3CNF7-svU3zAVHCkdkdLCiGOsax3Kc5hxv1UyG6NU3BNwi0mv-RKp110QxrDMr0lr_ywyfju6T0mv7-e_zr73lzdfLs4O71qrNCqNPUA0NKqjrVeOu8BlJUSwArvpFZ-5JbbwTLvPJM9U71wWuteasmV9xLEMfl0yK0H_FkwFzPVxXCzGWaMSza80r5TnItKP_5D7-KS5rqd4S0DBS2wfeDng3Ip5pzQm20K05B2hoHZl29q-YaD2Zdf9YenzMVOOP61z21XwA7AhphdwLkEH9zw39BHQSeOlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510605010</pqid></control><display><type>article</type><title>Role of AMPK in the protective effects exerted by triiodothyronine in ischemic-reperfused myocardium</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Society for Endocrinology Journals</source><creator>Hermann, Romina ; Mestre Cordero, Victoria Evangelina ; Fernández Pazos, María de las Mercedes ; Córdoba, Mailen Florencia ; Reznik, Federico Joaquín ; Vélez, Débora Elisabet ; Fellet, Andrea Lorena ; Marina Prendes, María Gabriela</creator><creatorcontrib>Hermann, Romina ; Mestre Cordero, Victoria Evangelina ; Fernández Pazos, María de las Mercedes ; Córdoba, Mailen Florencia ; Reznik, Federico Joaquín ; Vélez, Débora Elisabet ; Fellet, Andrea Lorena ; Marina Prendes, María Gabriela</creatorcontrib><description>Recent studies have provided evidence that triiodothyronine (T3) might play an effective role in the recovery of ischemic myocardium, through the preservation of mitochondrial function and the improvement of energy substrate metabolism. To this respect, it has been suggested that T3 could activate AMP-activated protein kinase (AMPK), the cellular ‘fuel-gauge’ enzyme, although its role has yet to be elucidated. The aim of the present study was to investigate the effects produced by acute treatment with T3 (60 nM) and the pharmacological inhibition of AMPK by compound C on isolated rat left atria subjected to 75 min simulated ischemia-75 min reperfusion. Results showed that T3 increased AMPK activation during simulated ischemia-reperfusion, while compound C prevented it. At the end of simulated reperfusion, acute T3 treatment increased contractile function recovery and cellular viability conservation. Mitochondrial ultrastructure was better preserved in the presence of T3 as well as mitochondrial ATP production rate and tissue ATP content. Calcium retention capacity, a parameter widely used as an indicator of the resistance of mitochondrial permeability transition pore (MPTP) to opening, and GSK-3β phosphorylation, a master switch enzyme that limits MPTP opening, were increased by T3 administration. All these beneficial effects exerted by T3 acute treatment were prevented when compound C was co-administrated. The present study provided original evidence that T3 enhances intrinsic activation of AMPK during myocardial ischemia-reperfusion, being this enzyme involved, at least in part, in the protective effects exerted by T3, contributing to mitochondrial structure and function preservation, post-ischemic contractile recovery and conservation of cellular viability.</description><identifier>ISSN: 0952-5041</identifier><identifier>EISSN: 1479-6813</identifier><identifier>DOI: 10.1530/JME-20-0314</identifier><identifier>PMID: 33640872</identifier><language>eng</language><publisher>England: Bioscientifica Ltd</publisher><subject>Adenosine Triphosphate - metabolism ; AMP ; AMP-activated protein kinase ; AMP-Activated Protein Kinases - metabolism ; Animals ; Calcium ; Calcium - metabolism ; Cardiotonic Agents - pharmacology ; Cardiotonic Agents - therapeutic use ; Cell Survival - drug effects ; Cell viability ; Conservation ; Contractility ; Diastole - drug effects ; Energy metabolism ; Energy resources ; Enzymes ; Female ; Glycogen Synthase Kinase 3 beta - metabolism ; Heart Atria - ultrastructure ; Ischemia ; Kinases ; Membrane permeability ; Mitochondria, Heart - drug effects ; Mitochondria, Heart - metabolism ; Mitochondria, Heart - ultrastructure ; Mitochondrial permeability transition pore ; Myocardial Contraction - drug effects ; Myocardial ischemia ; Myocardial Reperfusion Injury - drug therapy ; Myocardial Reperfusion Injury - enzymology ; Myocardial Reperfusion Injury - physiopathology ; Myocardium ; Myocardium - enzymology ; Myocardium - pathology ; Phosphorylation ; Phosphorylation - drug effects ; Preservation ; Rats ; Rats, Sprague-Dawley ; Reperfusion ; Structure-function relationships ; Systole - drug effects ; Thyroid hormones ; Triiodothyronine ; Triiodothyronine - pharmacology ; Triiodothyronine - therapeutic use ; Ultrastructure</subject><ispartof>Journal of molecular endocrinology, 2021-03, Vol.66 (3), p.207-221</ispartof><rights>2021 Society for Endocrinology</rights><rights>Copyright Society for Endocrinology &amp; BioScientifica Ltd. Mar 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b396t-314094b6715f4cff006b4400b3fc496fd2b2bab1fcf1481683c999849426ff403</citedby><orcidid>0000-0003-3129-6628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3950,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33640872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hermann, Romina</creatorcontrib><creatorcontrib>Mestre Cordero, Victoria Evangelina</creatorcontrib><creatorcontrib>Fernández Pazos, María de las Mercedes</creatorcontrib><creatorcontrib>Córdoba, Mailen Florencia</creatorcontrib><creatorcontrib>Reznik, Federico Joaquín</creatorcontrib><creatorcontrib>Vélez, Débora Elisabet</creatorcontrib><creatorcontrib>Fellet, Andrea Lorena</creatorcontrib><creatorcontrib>Marina Prendes, María Gabriela</creatorcontrib><title>Role of AMPK in the protective effects exerted by triiodothyronine in ischemic-reperfused myocardium</title><title>Journal of molecular endocrinology</title><addtitle>J Mol Endocrinol</addtitle><description>Recent studies have provided evidence that triiodothyronine (T3) might play an effective role in the recovery of ischemic myocardium, through the preservation of mitochondrial function and the improvement of energy substrate metabolism. To this respect, it has been suggested that T3 could activate AMP-activated protein kinase (AMPK), the cellular ‘fuel-gauge’ enzyme, although its role has yet to be elucidated. The aim of the present study was to investigate the effects produced by acute treatment with T3 (60 nM) and the pharmacological inhibition of AMPK by compound C on isolated rat left atria subjected to 75 min simulated ischemia-75 min reperfusion. Results showed that T3 increased AMPK activation during simulated ischemia-reperfusion, while compound C prevented it. At the end of simulated reperfusion, acute T3 treatment increased contractile function recovery and cellular viability conservation. Mitochondrial ultrastructure was better preserved in the presence of T3 as well as mitochondrial ATP production rate and tissue ATP content. Calcium retention capacity, a parameter widely used as an indicator of the resistance of mitochondrial permeability transition pore (MPTP) to opening, and GSK-3β phosphorylation, a master switch enzyme that limits MPTP opening, were increased by T3 administration. All these beneficial effects exerted by T3 acute treatment were prevented when compound C was co-administrated. The present study provided original evidence that T3 enhances intrinsic activation of AMPK during myocardial ischemia-reperfusion, being this enzyme involved, at least in part, in the protective effects exerted by T3, contributing to mitochondrial structure and function preservation, post-ischemic contractile recovery and conservation of cellular viability.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>AMP</subject><subject>AMP-activated protein kinase</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Cardiotonic Agents - pharmacology</subject><subject>Cardiotonic Agents - therapeutic use</subject><subject>Cell Survival - drug effects</subject><subject>Cell viability</subject><subject>Conservation</subject><subject>Contractility</subject><subject>Diastole - drug effects</subject><subject>Energy metabolism</subject><subject>Energy resources</subject><subject>Enzymes</subject><subject>Female</subject><subject>Glycogen Synthase Kinase 3 beta - metabolism</subject><subject>Heart Atria - ultrastructure</subject><subject>Ischemia</subject><subject>Kinases</subject><subject>Membrane permeability</subject><subject>Mitochondria, Heart - drug effects</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Mitochondria, Heart - ultrastructure</subject><subject>Mitochondrial permeability transition pore</subject><subject>Myocardial Contraction - drug effects</subject><subject>Myocardial ischemia</subject><subject>Myocardial Reperfusion Injury - drug therapy</subject><subject>Myocardial Reperfusion Injury - enzymology</subject><subject>Myocardial Reperfusion Injury - physiopathology</subject><subject>Myocardium</subject><subject>Myocardium - enzymology</subject><subject>Myocardium - pathology</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Preservation</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reperfusion</subject><subject>Structure-function relationships</subject><subject>Systole - drug effects</subject><subject>Thyroid hormones</subject><subject>Triiodothyronine</subject><subject>Triiodothyronine - pharmacology</subject><subject>Triiodothyronine - therapeutic use</subject><subject>Ultrastructure</subject><issn>0952-5041</issn><issn>1479-6813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90M9rFDEUB_Agil2rJ-8S8CLI2Jcfk5kcS6la29Iieg6TzAubsjNZk0zp_vfNsq0HD56Sw-d9ee9LyHsGX1gr4OTH9XnDoQHB5AuyYrLTjeqZeElWoFvetCDZEXmT8x0Aa1knX5MjIZSEvuMrMv6MG6TR09Pr20saZlrWSLcpFnQl3CNF7-svU3zAVHCkdkdLCiGOsax3Kc5hxv1UyG6NU3BNwi0mv-RKp110QxrDMr0lr_ywyfju6T0mv7-e_zr73lzdfLs4O71qrNCqNPUA0NKqjrVeOu8BlJUSwArvpFZ-5JbbwTLvPJM9U71wWuteasmV9xLEMfl0yK0H_FkwFzPVxXCzGWaMSza80r5TnItKP_5D7-KS5rqd4S0DBS2wfeDng3Ip5pzQm20K05B2hoHZl29q-YaD2Zdf9YenzMVOOP61z21XwA7AhphdwLkEH9zw39BHQSeOlQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Hermann, Romina</creator><creator>Mestre Cordero, Victoria Evangelina</creator><creator>Fernández Pazos, María de las Mercedes</creator><creator>Córdoba, Mailen Florencia</creator><creator>Reznik, Federico Joaquín</creator><creator>Vélez, Débora Elisabet</creator><creator>Fellet, Andrea Lorena</creator><creator>Marina Prendes, María Gabriela</creator><general>Bioscientifica Ltd</general><general>Society for Endocrinology &amp; BioScientifica Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3129-6628</orcidid></search><sort><creationdate>20210301</creationdate><title>Role of AMPK in the protective effects exerted by triiodothyronine in ischemic-reperfused myocardium</title><author>Hermann, Romina ; Mestre Cordero, Victoria Evangelina ; Fernández Pazos, María de las Mercedes ; Córdoba, Mailen Florencia ; Reznik, Federico Joaquín ; Vélez, Débora Elisabet ; Fellet, Andrea Lorena ; Marina Prendes, María Gabriela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b396t-314094b6715f4cff006b4400b3fc496fd2b2bab1fcf1481683c999849426ff403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>AMP</topic><topic>AMP-activated protein kinase</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Cardiotonic Agents - pharmacology</topic><topic>Cardiotonic Agents - therapeutic use</topic><topic>Cell Survival - drug effects</topic><topic>Cell viability</topic><topic>Conservation</topic><topic>Contractility</topic><topic>Diastole - drug effects</topic><topic>Energy metabolism</topic><topic>Energy resources</topic><topic>Enzymes</topic><topic>Female</topic><topic>Glycogen Synthase Kinase 3 beta - metabolism</topic><topic>Heart Atria - ultrastructure</topic><topic>Ischemia</topic><topic>Kinases</topic><topic>Membrane permeability</topic><topic>Mitochondria, Heart - drug effects</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Mitochondria, Heart - ultrastructure</topic><topic>Mitochondrial permeability transition pore</topic><topic>Myocardial Contraction - drug effects</topic><topic>Myocardial ischemia</topic><topic>Myocardial Reperfusion Injury - drug therapy</topic><topic>Myocardial Reperfusion Injury - enzymology</topic><topic>Myocardial Reperfusion Injury - physiopathology</topic><topic>Myocardium</topic><topic>Myocardium - enzymology</topic><topic>Myocardium - pathology</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Preservation</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reperfusion</topic><topic>Structure-function relationships</topic><topic>Systole - drug effects</topic><topic>Thyroid hormones</topic><topic>Triiodothyronine</topic><topic>Triiodothyronine - pharmacology</topic><topic>Triiodothyronine - therapeutic use</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hermann, Romina</creatorcontrib><creatorcontrib>Mestre Cordero, Victoria Evangelina</creatorcontrib><creatorcontrib>Fernández Pazos, María de las Mercedes</creatorcontrib><creatorcontrib>Córdoba, Mailen Florencia</creatorcontrib><creatorcontrib>Reznik, Federico Joaquín</creatorcontrib><creatorcontrib>Vélez, Débora Elisabet</creatorcontrib><creatorcontrib>Fellet, Andrea Lorena</creatorcontrib><creatorcontrib>Marina Prendes, María Gabriela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular endocrinology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hermann, Romina</au><au>Mestre Cordero, Victoria Evangelina</au><au>Fernández Pazos, María de las Mercedes</au><au>Córdoba, Mailen Florencia</au><au>Reznik, Federico Joaquín</au><au>Vélez, Débora Elisabet</au><au>Fellet, Andrea Lorena</au><au>Marina Prendes, María Gabriela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of AMPK in the protective effects exerted by triiodothyronine in ischemic-reperfused myocardium</atitle><jtitle>Journal of molecular endocrinology</jtitle><addtitle>J Mol Endocrinol</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>66</volume><issue>3</issue><spage>207</spage><epage>221</epage><pages>207-221</pages><issn>0952-5041</issn><eissn>1479-6813</eissn><abstract>Recent studies have provided evidence that triiodothyronine (T3) might play an effective role in the recovery of ischemic myocardium, through the preservation of mitochondrial function and the improvement of energy substrate metabolism. To this respect, it has been suggested that T3 could activate AMP-activated protein kinase (AMPK), the cellular ‘fuel-gauge’ enzyme, although its role has yet to be elucidated. The aim of the present study was to investigate the effects produced by acute treatment with T3 (60 nM) and the pharmacological inhibition of AMPK by compound C on isolated rat left atria subjected to 75 min simulated ischemia-75 min reperfusion. Results showed that T3 increased AMPK activation during simulated ischemia-reperfusion, while compound C prevented it. At the end of simulated reperfusion, acute T3 treatment increased contractile function recovery and cellular viability conservation. Mitochondrial ultrastructure was better preserved in the presence of T3 as well as mitochondrial ATP production rate and tissue ATP content. Calcium retention capacity, a parameter widely used as an indicator of the resistance of mitochondrial permeability transition pore (MPTP) to opening, and GSK-3β phosphorylation, a master switch enzyme that limits MPTP opening, were increased by T3 administration. All these beneficial effects exerted by T3 acute treatment were prevented when compound C was co-administrated. The present study provided original evidence that T3 enhances intrinsic activation of AMPK during myocardial ischemia-reperfusion, being this enzyme involved, at least in part, in the protective effects exerted by T3, contributing to mitochondrial structure and function preservation, post-ischemic contractile recovery and conservation of cellular viability.</abstract><cop>England</cop><pub>Bioscientifica Ltd</pub><pmid>33640872</pmid><doi>10.1530/JME-20-0314</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3129-6628</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0952-5041
ispartof Journal of molecular endocrinology, 2021-03, Vol.66 (3), p.207-221
issn 0952-5041
1479-6813
language eng
recordid cdi_proquest_miscellaneous_2494876223
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Society for Endocrinology Journals
subjects Adenosine Triphosphate - metabolism
AMP
AMP-activated protein kinase
AMP-Activated Protein Kinases - metabolism
Animals
Calcium
Calcium - metabolism
Cardiotonic Agents - pharmacology
Cardiotonic Agents - therapeutic use
Cell Survival - drug effects
Cell viability
Conservation
Contractility
Diastole - drug effects
Energy metabolism
Energy resources
Enzymes
Female
Glycogen Synthase Kinase 3 beta - metabolism
Heart Atria - ultrastructure
Ischemia
Kinases
Membrane permeability
Mitochondria, Heart - drug effects
Mitochondria, Heart - metabolism
Mitochondria, Heart - ultrastructure
Mitochondrial permeability transition pore
Myocardial Contraction - drug effects
Myocardial ischemia
Myocardial Reperfusion Injury - drug therapy
Myocardial Reperfusion Injury - enzymology
Myocardial Reperfusion Injury - physiopathology
Myocardium
Myocardium - enzymology
Myocardium - pathology
Phosphorylation
Phosphorylation - drug effects
Preservation
Rats
Rats, Sprague-Dawley
Reperfusion
Structure-function relationships
Systole - drug effects
Thyroid hormones
Triiodothyronine
Triiodothyronine - pharmacology
Triiodothyronine - therapeutic use
Ultrastructure
title Role of AMPK in the protective effects exerted by triiodothyronine in ischemic-reperfused myocardium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20AMPK%20in%20the%20protective%20effects%20exerted%20by%20triiodothyronine%20in%20ischemic-reperfused%20myocardium&rft.jtitle=Journal%20of%20molecular%20endocrinology&rft.au=Hermann,%20Romina&rft.date=2021-03-01&rft.volume=66&rft.issue=3&rft.spage=207&rft.epage=221&rft.pages=207-221&rft.issn=0952-5041&rft.eissn=1479-6813&rft_id=info:doi/10.1530/JME-20-0314&rft_dat=%3Cproquest_cross%3E2494876223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510605010&rft_id=info:pmid/33640872&rfr_iscdi=true