Role of AMPK in the protective effects exerted by triiodothyronine in ischemic-reperfused myocardium
Recent studies have provided evidence that triiodothyronine (T3) might play an effective role in the recovery of ischemic myocardium, through the preservation of mitochondrial function and the improvement of energy substrate metabolism. To this respect, it has been suggested that T3 could activate A...
Gespeichert in:
Veröffentlicht in: | Journal of molecular endocrinology 2021-03, Vol.66 (3), p.207-221 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 221 |
---|---|
container_issue | 3 |
container_start_page | 207 |
container_title | Journal of molecular endocrinology |
container_volume | 66 |
creator | Hermann, Romina Mestre Cordero, Victoria Evangelina Fernández Pazos, María de las Mercedes Córdoba, Mailen Florencia Reznik, Federico Joaquín Vélez, Débora Elisabet Fellet, Andrea Lorena Marina Prendes, María Gabriela |
description | Recent studies have provided evidence that triiodothyronine (T3) might play an effective role in the recovery of ischemic myocardium, through the preservation of mitochondrial function and the improvement of energy substrate metabolism. To this respect, it has been suggested that T3 could activate AMP-activated protein kinase (AMPK), the cellular ‘fuel-gauge’ enzyme, although its role has yet to be elucidated. The aim of the present study was to investigate the effects produced by acute treatment with T3 (60 nM) and the pharmacological inhibition of AMPK by compound C on isolated rat left atria subjected to 75 min simulated ischemia-75 min reperfusion. Results showed that T3 increased AMPK activation during simulated ischemia-reperfusion, while compound C prevented it. At the end of simulated reperfusion, acute T3 treatment increased contractile function recovery and cellular viability conservation. Mitochondrial ultrastructure was better preserved in the presence of T3 as well as mitochondrial ATP production rate and tissue ATP content. Calcium retention capacity, a parameter widely used as an indicator of the resistance of mitochondrial permeability transition pore (MPTP) to opening, and GSK-3β phosphorylation, a master switch enzyme that limits MPTP opening, were increased by T3 administration. All these beneficial effects exerted by T3 acute treatment were prevented when compound C was co-administrated. The present study provided original evidence that T3 enhances intrinsic activation of AMPK during myocardial ischemia-reperfusion, being this enzyme involved, at least in part, in the protective effects exerted by T3, contributing to mitochondrial structure and function preservation, post-ischemic contractile recovery and conservation of cellular viability. |
doi_str_mv | 10.1530/JME-20-0314 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2494876223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494876223</sourcerecordid><originalsourceid>FETCH-LOGICAL-b396t-314094b6715f4cff006b4400b3fc496fd2b2bab1fcf1481683c999849426ff403</originalsourceid><addsrcrecordid>eNp90M9rFDEUB_Agil2rJ-8S8CLI2Jcfk5kcS6la29Iieg6TzAubsjNZk0zp_vfNsq0HD56Sw-d9ee9LyHsGX1gr4OTH9XnDoQHB5AuyYrLTjeqZeElWoFvetCDZEXmT8x0Aa1knX5MjIZSEvuMrMv6MG6TR09Pr20saZlrWSLcpFnQl3CNF7-svU3zAVHCkdkdLCiGOsax3Kc5hxv1UyG6NU3BNwi0mv-RKp110QxrDMr0lr_ywyfju6T0mv7-e_zr73lzdfLs4O71qrNCqNPUA0NKqjrVeOu8BlJUSwArvpFZ-5JbbwTLvPJM9U71wWuteasmV9xLEMfl0yK0H_FkwFzPVxXCzGWaMSza80r5TnItKP_5D7-KS5rqd4S0DBS2wfeDng3Ip5pzQm20K05B2hoHZl29q-YaD2Zdf9YenzMVOOP61z21XwA7AhphdwLkEH9zw39BHQSeOlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510605010</pqid></control><display><type>article</type><title>Role of AMPK in the protective effects exerted by triiodothyronine in ischemic-reperfused myocardium</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Society for Endocrinology Journals</source><creator>Hermann, Romina ; Mestre Cordero, Victoria Evangelina ; Fernández Pazos, María de las Mercedes ; Córdoba, Mailen Florencia ; Reznik, Federico Joaquín ; Vélez, Débora Elisabet ; Fellet, Andrea Lorena ; Marina Prendes, María Gabriela</creator><creatorcontrib>Hermann, Romina ; Mestre Cordero, Victoria Evangelina ; Fernández Pazos, María de las Mercedes ; Córdoba, Mailen Florencia ; Reznik, Federico Joaquín ; Vélez, Débora Elisabet ; Fellet, Andrea Lorena ; Marina Prendes, María Gabriela</creatorcontrib><description>Recent studies have provided evidence that triiodothyronine (T3) might play an effective role in the recovery of ischemic myocardium, through the preservation of mitochondrial function and the improvement of energy substrate metabolism. To this respect, it has been suggested that T3 could activate AMP-activated protein kinase (AMPK), the cellular ‘fuel-gauge’ enzyme, although its role has yet to be elucidated. The aim of the present study was to investigate the effects produced by acute treatment with T3 (60 nM) and the pharmacological inhibition of AMPK by compound C on isolated rat left atria subjected to 75 min simulated ischemia-75 min reperfusion. Results showed that T3 increased AMPK activation during simulated ischemia-reperfusion, while compound C prevented it. At the end of simulated reperfusion, acute T3 treatment increased contractile function recovery and cellular viability conservation. Mitochondrial ultrastructure was better preserved in the presence of T3 as well as mitochondrial ATP production rate and tissue ATP content. Calcium retention capacity, a parameter widely used as an indicator of the resistance of mitochondrial permeability transition pore (MPTP) to opening, and GSK-3β phosphorylation, a master switch enzyme that limits MPTP opening, were increased by T3 administration. All these beneficial effects exerted by T3 acute treatment were prevented when compound C was co-administrated. The present study provided original evidence that T3 enhances intrinsic activation of AMPK during myocardial ischemia-reperfusion, being this enzyme involved, at least in part, in the protective effects exerted by T3, contributing to mitochondrial structure and function preservation, post-ischemic contractile recovery and conservation of cellular viability.</description><identifier>ISSN: 0952-5041</identifier><identifier>EISSN: 1479-6813</identifier><identifier>DOI: 10.1530/JME-20-0314</identifier><identifier>PMID: 33640872</identifier><language>eng</language><publisher>England: Bioscientifica Ltd</publisher><subject>Adenosine Triphosphate - metabolism ; AMP ; AMP-activated protein kinase ; AMP-Activated Protein Kinases - metabolism ; Animals ; Calcium ; Calcium - metabolism ; Cardiotonic Agents - pharmacology ; Cardiotonic Agents - therapeutic use ; Cell Survival - drug effects ; Cell viability ; Conservation ; Contractility ; Diastole - drug effects ; Energy metabolism ; Energy resources ; Enzymes ; Female ; Glycogen Synthase Kinase 3 beta - metabolism ; Heart Atria - ultrastructure ; Ischemia ; Kinases ; Membrane permeability ; Mitochondria, Heart - drug effects ; Mitochondria, Heart - metabolism ; Mitochondria, Heart - ultrastructure ; Mitochondrial permeability transition pore ; Myocardial Contraction - drug effects ; Myocardial ischemia ; Myocardial Reperfusion Injury - drug therapy ; Myocardial Reperfusion Injury - enzymology ; Myocardial Reperfusion Injury - physiopathology ; Myocardium ; Myocardium - enzymology ; Myocardium - pathology ; Phosphorylation ; Phosphorylation - drug effects ; Preservation ; Rats ; Rats, Sprague-Dawley ; Reperfusion ; Structure-function relationships ; Systole - drug effects ; Thyroid hormones ; Triiodothyronine ; Triiodothyronine - pharmacology ; Triiodothyronine - therapeutic use ; Ultrastructure</subject><ispartof>Journal of molecular endocrinology, 2021-03, Vol.66 (3), p.207-221</ispartof><rights>2021 Society for Endocrinology</rights><rights>Copyright Society for Endocrinology & BioScientifica Ltd. Mar 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b396t-314094b6715f4cff006b4400b3fc496fd2b2bab1fcf1481683c999849426ff403</citedby><orcidid>0000-0003-3129-6628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3950,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33640872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hermann, Romina</creatorcontrib><creatorcontrib>Mestre Cordero, Victoria Evangelina</creatorcontrib><creatorcontrib>Fernández Pazos, María de las Mercedes</creatorcontrib><creatorcontrib>Córdoba, Mailen Florencia</creatorcontrib><creatorcontrib>Reznik, Federico Joaquín</creatorcontrib><creatorcontrib>Vélez, Débora Elisabet</creatorcontrib><creatorcontrib>Fellet, Andrea Lorena</creatorcontrib><creatorcontrib>Marina Prendes, María Gabriela</creatorcontrib><title>Role of AMPK in the protective effects exerted by triiodothyronine in ischemic-reperfused myocardium</title><title>Journal of molecular endocrinology</title><addtitle>J Mol Endocrinol</addtitle><description>Recent studies have provided evidence that triiodothyronine (T3) might play an effective role in the recovery of ischemic myocardium, through the preservation of mitochondrial function and the improvement of energy substrate metabolism. To this respect, it has been suggested that T3 could activate AMP-activated protein kinase (AMPK), the cellular ‘fuel-gauge’ enzyme, although its role has yet to be elucidated. The aim of the present study was to investigate the effects produced by acute treatment with T3 (60 nM) and the pharmacological inhibition of AMPK by compound C on isolated rat left atria subjected to 75 min simulated ischemia-75 min reperfusion. Results showed that T3 increased AMPK activation during simulated ischemia-reperfusion, while compound C prevented it. At the end of simulated reperfusion, acute T3 treatment increased contractile function recovery and cellular viability conservation. Mitochondrial ultrastructure was better preserved in the presence of T3 as well as mitochondrial ATP production rate and tissue ATP content. Calcium retention capacity, a parameter widely used as an indicator of the resistance of mitochondrial permeability transition pore (MPTP) to opening, and GSK-3β phosphorylation, a master switch enzyme that limits MPTP opening, were increased by T3 administration. All these beneficial effects exerted by T3 acute treatment were prevented when compound C was co-administrated. The present study provided original evidence that T3 enhances intrinsic activation of AMPK during myocardial ischemia-reperfusion, being this enzyme involved, at least in part, in the protective effects exerted by T3, contributing to mitochondrial structure and function preservation, post-ischemic contractile recovery and conservation of cellular viability.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>AMP</subject><subject>AMP-activated protein kinase</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Cardiotonic Agents - pharmacology</subject><subject>Cardiotonic Agents - therapeutic use</subject><subject>Cell Survival - drug effects</subject><subject>Cell viability</subject><subject>Conservation</subject><subject>Contractility</subject><subject>Diastole - drug effects</subject><subject>Energy metabolism</subject><subject>Energy resources</subject><subject>Enzymes</subject><subject>Female</subject><subject>Glycogen Synthase Kinase 3 beta - metabolism</subject><subject>Heart Atria - ultrastructure</subject><subject>Ischemia</subject><subject>Kinases</subject><subject>Membrane permeability</subject><subject>Mitochondria, Heart - drug effects</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Mitochondria, Heart - ultrastructure</subject><subject>Mitochondrial permeability transition pore</subject><subject>Myocardial Contraction - drug effects</subject><subject>Myocardial ischemia</subject><subject>Myocardial Reperfusion Injury - drug therapy</subject><subject>Myocardial Reperfusion Injury - enzymology</subject><subject>Myocardial Reperfusion Injury - physiopathology</subject><subject>Myocardium</subject><subject>Myocardium - enzymology</subject><subject>Myocardium - pathology</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Preservation</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reperfusion</subject><subject>Structure-function relationships</subject><subject>Systole - drug effects</subject><subject>Thyroid hormones</subject><subject>Triiodothyronine</subject><subject>Triiodothyronine - pharmacology</subject><subject>Triiodothyronine - therapeutic use</subject><subject>Ultrastructure</subject><issn>0952-5041</issn><issn>1479-6813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90M9rFDEUB_Agil2rJ-8S8CLI2Jcfk5kcS6la29Iieg6TzAubsjNZk0zp_vfNsq0HD56Sw-d9ee9LyHsGX1gr4OTH9XnDoQHB5AuyYrLTjeqZeElWoFvetCDZEXmT8x0Aa1knX5MjIZSEvuMrMv6MG6TR09Pr20saZlrWSLcpFnQl3CNF7-svU3zAVHCkdkdLCiGOsax3Kc5hxv1UyG6NU3BNwi0mv-RKp110QxrDMr0lr_ywyfju6T0mv7-e_zr73lzdfLs4O71qrNCqNPUA0NKqjrVeOu8BlJUSwArvpFZ-5JbbwTLvPJM9U71wWuteasmV9xLEMfl0yK0H_FkwFzPVxXCzGWaMSza80r5TnItKP_5D7-KS5rqd4S0DBS2wfeDng3Ip5pzQm20K05B2hoHZl29q-YaD2Zdf9YenzMVOOP61z21XwA7AhphdwLkEH9zw39BHQSeOlQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Hermann, Romina</creator><creator>Mestre Cordero, Victoria Evangelina</creator><creator>Fernández Pazos, María de las Mercedes</creator><creator>Córdoba, Mailen Florencia</creator><creator>Reznik, Federico Joaquín</creator><creator>Vélez, Débora Elisabet</creator><creator>Fellet, Andrea Lorena</creator><creator>Marina Prendes, María Gabriela</creator><general>Bioscientifica Ltd</general><general>Society for Endocrinology & BioScientifica Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3129-6628</orcidid></search><sort><creationdate>20210301</creationdate><title>Role of AMPK in the protective effects exerted by triiodothyronine in ischemic-reperfused myocardium</title><author>Hermann, Romina ; Mestre Cordero, Victoria Evangelina ; Fernández Pazos, María de las Mercedes ; Córdoba, Mailen Florencia ; Reznik, Federico Joaquín ; Vélez, Débora Elisabet ; Fellet, Andrea Lorena ; Marina Prendes, María Gabriela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b396t-314094b6715f4cff006b4400b3fc496fd2b2bab1fcf1481683c999849426ff403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>AMP</topic><topic>AMP-activated protein kinase</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Cardiotonic Agents - pharmacology</topic><topic>Cardiotonic Agents - therapeutic use</topic><topic>Cell Survival - drug effects</topic><topic>Cell viability</topic><topic>Conservation</topic><topic>Contractility</topic><topic>Diastole - drug effects</topic><topic>Energy metabolism</topic><topic>Energy resources</topic><topic>Enzymes</topic><topic>Female</topic><topic>Glycogen Synthase Kinase 3 beta - metabolism</topic><topic>Heart Atria - ultrastructure</topic><topic>Ischemia</topic><topic>Kinases</topic><topic>Membrane permeability</topic><topic>Mitochondria, Heart - drug effects</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Mitochondria, Heart - ultrastructure</topic><topic>Mitochondrial permeability transition pore</topic><topic>Myocardial Contraction - drug effects</topic><topic>Myocardial ischemia</topic><topic>Myocardial Reperfusion Injury - drug therapy</topic><topic>Myocardial Reperfusion Injury - enzymology</topic><topic>Myocardial Reperfusion Injury - physiopathology</topic><topic>Myocardium</topic><topic>Myocardium - enzymology</topic><topic>Myocardium - pathology</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Preservation</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reperfusion</topic><topic>Structure-function relationships</topic><topic>Systole - drug effects</topic><topic>Thyroid hormones</topic><topic>Triiodothyronine</topic><topic>Triiodothyronine - pharmacology</topic><topic>Triiodothyronine - therapeutic use</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hermann, Romina</creatorcontrib><creatorcontrib>Mestre Cordero, Victoria Evangelina</creatorcontrib><creatorcontrib>Fernández Pazos, María de las Mercedes</creatorcontrib><creatorcontrib>Córdoba, Mailen Florencia</creatorcontrib><creatorcontrib>Reznik, Federico Joaquín</creatorcontrib><creatorcontrib>Vélez, Débora Elisabet</creatorcontrib><creatorcontrib>Fellet, Andrea Lorena</creatorcontrib><creatorcontrib>Marina Prendes, María Gabriela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular endocrinology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hermann, Romina</au><au>Mestre Cordero, Victoria Evangelina</au><au>Fernández Pazos, María de las Mercedes</au><au>Córdoba, Mailen Florencia</au><au>Reznik, Federico Joaquín</au><au>Vélez, Débora Elisabet</au><au>Fellet, Andrea Lorena</au><au>Marina Prendes, María Gabriela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of AMPK in the protective effects exerted by triiodothyronine in ischemic-reperfused myocardium</atitle><jtitle>Journal of molecular endocrinology</jtitle><addtitle>J Mol Endocrinol</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>66</volume><issue>3</issue><spage>207</spage><epage>221</epage><pages>207-221</pages><issn>0952-5041</issn><eissn>1479-6813</eissn><abstract>Recent studies have provided evidence that triiodothyronine (T3) might play an effective role in the recovery of ischemic myocardium, through the preservation of mitochondrial function and the improvement of energy substrate metabolism. To this respect, it has been suggested that T3 could activate AMP-activated protein kinase (AMPK), the cellular ‘fuel-gauge’ enzyme, although its role has yet to be elucidated. The aim of the present study was to investigate the effects produced by acute treatment with T3 (60 nM) and the pharmacological inhibition of AMPK by compound C on isolated rat left atria subjected to 75 min simulated ischemia-75 min reperfusion. Results showed that T3 increased AMPK activation during simulated ischemia-reperfusion, while compound C prevented it. At the end of simulated reperfusion, acute T3 treatment increased contractile function recovery and cellular viability conservation. Mitochondrial ultrastructure was better preserved in the presence of T3 as well as mitochondrial ATP production rate and tissue ATP content. Calcium retention capacity, a parameter widely used as an indicator of the resistance of mitochondrial permeability transition pore (MPTP) to opening, and GSK-3β phosphorylation, a master switch enzyme that limits MPTP opening, were increased by T3 administration. All these beneficial effects exerted by T3 acute treatment were prevented when compound C was co-administrated. The present study provided original evidence that T3 enhances intrinsic activation of AMPK during myocardial ischemia-reperfusion, being this enzyme involved, at least in part, in the protective effects exerted by T3, contributing to mitochondrial structure and function preservation, post-ischemic contractile recovery and conservation of cellular viability.</abstract><cop>England</cop><pub>Bioscientifica Ltd</pub><pmid>33640872</pmid><doi>10.1530/JME-20-0314</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3129-6628</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-5041 |
ispartof | Journal of molecular endocrinology, 2021-03, Vol.66 (3), p.207-221 |
issn | 0952-5041 1479-6813 |
language | eng |
recordid | cdi_proquest_miscellaneous_2494876223 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Society for Endocrinology Journals |
subjects | Adenosine Triphosphate - metabolism AMP AMP-activated protein kinase AMP-Activated Protein Kinases - metabolism Animals Calcium Calcium - metabolism Cardiotonic Agents - pharmacology Cardiotonic Agents - therapeutic use Cell Survival - drug effects Cell viability Conservation Contractility Diastole - drug effects Energy metabolism Energy resources Enzymes Female Glycogen Synthase Kinase 3 beta - metabolism Heart Atria - ultrastructure Ischemia Kinases Membrane permeability Mitochondria, Heart - drug effects Mitochondria, Heart - metabolism Mitochondria, Heart - ultrastructure Mitochondrial permeability transition pore Myocardial Contraction - drug effects Myocardial ischemia Myocardial Reperfusion Injury - drug therapy Myocardial Reperfusion Injury - enzymology Myocardial Reperfusion Injury - physiopathology Myocardium Myocardium - enzymology Myocardium - pathology Phosphorylation Phosphorylation - drug effects Preservation Rats Rats, Sprague-Dawley Reperfusion Structure-function relationships Systole - drug effects Thyroid hormones Triiodothyronine Triiodothyronine - pharmacology Triiodothyronine - therapeutic use Ultrastructure |
title | Role of AMPK in the protective effects exerted by triiodothyronine in ischemic-reperfused myocardium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20AMPK%20in%20the%20protective%20effects%20exerted%20by%20triiodothyronine%20in%20ischemic-reperfused%20myocardium&rft.jtitle=Journal%20of%20molecular%20endocrinology&rft.au=Hermann,%20Romina&rft.date=2021-03-01&rft.volume=66&rft.issue=3&rft.spage=207&rft.epage=221&rft.pages=207-221&rft.issn=0952-5041&rft.eissn=1479-6813&rft_id=info:doi/10.1530/JME-20-0314&rft_dat=%3Cproquest_cross%3E2494876223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510605010&rft_id=info:pmid/33640872&rfr_iscdi=true |