Reducing Energy Disorder of Hole Transport Layer by Charge Transfer Complex for High Performance p–i–n Perovskite Solar Cells

Solution‐processed organic semiconductor charge‐transport layers (OS‐CTLs) with high mobility, low trap density, and energy level alignment have dominated the important progress in p–i–n planar perovskite solar cells (pero‐SCs). Unfortunately, their inevitable long chains result in weak molecular st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-04, Vol.33 (13), p.e2006753-n/a
Hauptverfasser: Xu, Guiying, Xue, Rongming, Stuard, Samuel J., Ade, Harald, Zhang, Chenjie, Yao, Jianlin, Li, Yaowen, Li, Yongfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page e2006753
container_title Advanced materials (Weinheim)
container_volume 33
creator Xu, Guiying
Xue, Rongming
Stuard, Samuel J.
Ade, Harald
Zhang, Chenjie
Yao, Jianlin
Li, Yaowen
Li, Yongfang
description Solution‐processed organic semiconductor charge‐transport layers (OS‐CTLs) with high mobility, low trap density, and energy level alignment have dominated the important progress in p–i–n planar perovskite solar cells (pero‐SCs). Unfortunately, their inevitable long chains result in weak molecular stacking, which is likely to generate high energy disorder and deteriorate the charge‐transport ability of OS‐CTLs. Here, a charge‐transfer complex (CTC) strategy to reduce the energy disorder in the OS‐CTLs by doping an organic semiconductor, 4,4′‐(4,8‐bis(5‐(trimethylsilyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)bis(N,N‐bis(4‐methoxyphenyl)aniline) (BDT‐Si), in a commercial hole‐transport layer (HTL), poly[bis(4‐phenyl) (2,4,6‐trimethylphenyl)amine (PTAA), is proposed. The formation of the CTC makes the PTAA conjugated backbone electron‐deficient, resulting in a quinoidal and stiffer character, which is likely to planarize the PTAA backbone and enhance the ordering of the film in nanoscale. The resultant HTL exhibits a reduced energy disorder, which simultaneously promotes hole transport in the HTL, hole extraction at the interface, energy level alignment, and quasi‐Fermi level splitting in the device. As a result, the p–i–n planar pero‐SCs with optimized HTL exhibit the best power conversion efficiency of 21.87% with good operating stability. This finding demonstrates that the CTC strategy is an effective way to reduce the energy disorder in HTLs and to improve the performance of planar pero‐SCs. A charge‐transfer complex strategy to reduce the energy disorder of organic semiconductor (OS) charge transport layers (CTLs) by doping a well‐designed OS (BDT‐Si) with electron‐acceptor features in a commercial hole‐transport material (PTAA) is proposed. As a result, the p–i–n planar perovskite solar cells with the optimized hole‐transport layer exhibit the best power conversion efficiency of 21.87%, and good operating stability at maximum power point under continuous illumination.
doi_str_mv 10.1002/adma.202006753
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2494304352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509224534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-8d9fdaf9d9a272fbbe52a70e9959bc354924caa7b1af20d8e6febace9d1435f3</originalsourceid><addsrcrecordid>eNqFkc-O0zAQxi3Eii0LV47IEhcu6U78J6mPVXehSEWLoHfLicfdLEkc7AbIDZ6BN-RJcNWySHvhYI31zW8-jeYj5EUO8xyAXRrbmTkDBlCUkj8is1yyPBOg5GMyA8VlpgqxOCdPY7wDAFVA8YScc15wITmbkZ8f0Y510-_odY9hN9GrJvpgMVDv6Nq3SLfB9HHwYU83Zkp6NdHVrQm7U8claeW7ocXv1PlA183uln7AkP6d6Wukw-8fv5r0-oPqv8bPzR7pJ9-aNIdtG5-RM2faiM9P9YJs31xvV-tsc_P23Wq5yWpecp4trHLWOGWVYSVzVYWSmRJQKamqmkuhmKiNKavcOAZ2gYXDytSobC64dPyCvD7aDsF_GTHuddfEOi1gevRj1EwowSGhLKGvHqB3fgx9Wk4zCYqxdDqRqPmRqoOPMaDTQ2g6Eyadgz5kow_Z6Pts0sDLk-1YdWjv8b9hJEAdgW9Ni9N_7PTy6v3yn_kfzOaeJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509224534</pqid></control><display><type>article</type><title>Reducing Energy Disorder of Hole Transport Layer by Charge Transfer Complex for High Performance p–i–n Perovskite Solar Cells</title><source>Access via Wiley Online Library</source><creator>Xu, Guiying ; Xue, Rongming ; Stuard, Samuel J. ; Ade, Harald ; Zhang, Chenjie ; Yao, Jianlin ; Li, Yaowen ; Li, Yongfang</creator><creatorcontrib>Xu, Guiying ; Xue, Rongming ; Stuard, Samuel J. ; Ade, Harald ; Zhang, Chenjie ; Yao, Jianlin ; Li, Yaowen ; Li, Yongfang</creatorcontrib><description>Solution‐processed organic semiconductor charge‐transport layers (OS‐CTLs) with high mobility, low trap density, and energy level alignment have dominated the important progress in p–i–n planar perovskite solar cells (pero‐SCs). Unfortunately, their inevitable long chains result in weak molecular stacking, which is likely to generate high energy disorder and deteriorate the charge‐transport ability of OS‐CTLs. Here, a charge‐transfer complex (CTC) strategy to reduce the energy disorder in the OS‐CTLs by doping an organic semiconductor, 4,4′‐(4,8‐bis(5‐(trimethylsilyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)bis(N,N‐bis(4‐methoxyphenyl)aniline) (BDT‐Si), in a commercial hole‐transport layer (HTL), poly[bis(4‐phenyl) (2,4,6‐trimethylphenyl)amine (PTAA), is proposed. The formation of the CTC makes the PTAA conjugated backbone electron‐deficient, resulting in a quinoidal and stiffer character, which is likely to planarize the PTAA backbone and enhance the ordering of the film in nanoscale. The resultant HTL exhibits a reduced energy disorder, which simultaneously promotes hole transport in the HTL, hole extraction at the interface, energy level alignment, and quasi‐Fermi level splitting in the device. As a result, the p–i–n planar pero‐SCs with optimized HTL exhibit the best power conversion efficiency of 21.87% with good operating stability. This finding demonstrates that the CTC strategy is an effective way to reduce the energy disorder in HTLs and to improve the performance of planar pero‐SCs. A charge‐transfer complex strategy to reduce the energy disorder of organic semiconductor (OS) charge transport layers (CTLs) by doping a well‐designed OS (BDT‐Si) with electron‐acceptor features in a commercial hole‐transport material (PTAA) is proposed. As a result, the p–i–n planar perovskite solar cells with the optimized hole‐transport layer exhibit the best power conversion efficiency of 21.87%, and good operating stability at maximum power point under continuous illumination.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202006753</identifier><identifier>PMID: 33634532</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alignment ; Aniline ; Backbone ; Charge transfer ; Energy ; Energy conversion efficiency ; energy disorder ; Energy levels ; high mobility ; hole transport ; Materials science ; molecular packing ; Performance enhancement ; Perovskites ; Photovoltaic cells ; p–i–n planar perovskite solar cells ; Solar cells</subject><ispartof>Advanced materials (Weinheim), 2021-04, Vol.33 (13), p.e2006753-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-8d9fdaf9d9a272fbbe52a70e9959bc354924caa7b1af20d8e6febace9d1435f3</citedby><cites>FETCH-LOGICAL-c3733-8d9fdaf9d9a272fbbe52a70e9959bc354924caa7b1af20d8e6febace9d1435f3</cites><orcidid>0000-0001-7229-582X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202006753$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202006753$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33634532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Guiying</creatorcontrib><creatorcontrib>Xue, Rongming</creatorcontrib><creatorcontrib>Stuard, Samuel J.</creatorcontrib><creatorcontrib>Ade, Harald</creatorcontrib><creatorcontrib>Zhang, Chenjie</creatorcontrib><creatorcontrib>Yao, Jianlin</creatorcontrib><creatorcontrib>Li, Yaowen</creatorcontrib><creatorcontrib>Li, Yongfang</creatorcontrib><title>Reducing Energy Disorder of Hole Transport Layer by Charge Transfer Complex for High Performance p–i–n Perovskite Solar Cells</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Solution‐processed organic semiconductor charge‐transport layers (OS‐CTLs) with high mobility, low trap density, and energy level alignment have dominated the important progress in p–i–n planar perovskite solar cells (pero‐SCs). Unfortunately, their inevitable long chains result in weak molecular stacking, which is likely to generate high energy disorder and deteriorate the charge‐transport ability of OS‐CTLs. Here, a charge‐transfer complex (CTC) strategy to reduce the energy disorder in the OS‐CTLs by doping an organic semiconductor, 4,4′‐(4,8‐bis(5‐(trimethylsilyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)bis(N,N‐bis(4‐methoxyphenyl)aniline) (BDT‐Si), in a commercial hole‐transport layer (HTL), poly[bis(4‐phenyl) (2,4,6‐trimethylphenyl)amine (PTAA), is proposed. The formation of the CTC makes the PTAA conjugated backbone electron‐deficient, resulting in a quinoidal and stiffer character, which is likely to planarize the PTAA backbone and enhance the ordering of the film in nanoscale. The resultant HTL exhibits a reduced energy disorder, which simultaneously promotes hole transport in the HTL, hole extraction at the interface, energy level alignment, and quasi‐Fermi level splitting in the device. As a result, the p–i–n planar pero‐SCs with optimized HTL exhibit the best power conversion efficiency of 21.87% with good operating stability. This finding demonstrates that the CTC strategy is an effective way to reduce the energy disorder in HTLs and to improve the performance of planar pero‐SCs. A charge‐transfer complex strategy to reduce the energy disorder of organic semiconductor (OS) charge transport layers (CTLs) by doping a well‐designed OS (BDT‐Si) with electron‐acceptor features in a commercial hole‐transport material (PTAA) is proposed. As a result, the p–i–n planar perovskite solar cells with the optimized hole‐transport layer exhibit the best power conversion efficiency of 21.87%, and good operating stability at maximum power point under continuous illumination.</description><subject>Alignment</subject><subject>Aniline</subject><subject>Backbone</subject><subject>Charge transfer</subject><subject>Energy</subject><subject>Energy conversion efficiency</subject><subject>energy disorder</subject><subject>Energy levels</subject><subject>high mobility</subject><subject>hole transport</subject><subject>Materials science</subject><subject>molecular packing</subject><subject>Performance enhancement</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>p–i–n planar perovskite solar cells</subject><subject>Solar cells</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc-O0zAQxi3Eii0LV47IEhcu6U78J6mPVXehSEWLoHfLicfdLEkc7AbIDZ6BN-RJcNWySHvhYI31zW8-jeYj5EUO8xyAXRrbmTkDBlCUkj8is1yyPBOg5GMyA8VlpgqxOCdPY7wDAFVA8YScc15wITmbkZ8f0Y510-_odY9hN9GrJvpgMVDv6Nq3SLfB9HHwYU83Zkp6NdHVrQm7U8claeW7ocXv1PlA183uln7AkP6d6Wukw-8fv5r0-oPqv8bPzR7pJ9-aNIdtG5-RM2faiM9P9YJs31xvV-tsc_P23Wq5yWpecp4trHLWOGWVYSVzVYWSmRJQKamqmkuhmKiNKavcOAZ2gYXDytSobC64dPyCvD7aDsF_GTHuddfEOi1gevRj1EwowSGhLKGvHqB3fgx9Wk4zCYqxdDqRqPmRqoOPMaDTQ2g6Eyadgz5kow_Z6Pts0sDLk-1YdWjv8b9hJEAdgW9Ni9N_7PTy6v3yn_kfzOaeJw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Xu, Guiying</creator><creator>Xue, Rongming</creator><creator>Stuard, Samuel J.</creator><creator>Ade, Harald</creator><creator>Zhang, Chenjie</creator><creator>Yao, Jianlin</creator><creator>Li, Yaowen</creator><creator>Li, Yongfang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7229-582X</orcidid></search><sort><creationdate>20210401</creationdate><title>Reducing Energy Disorder of Hole Transport Layer by Charge Transfer Complex for High Performance p–i–n Perovskite Solar Cells</title><author>Xu, Guiying ; Xue, Rongming ; Stuard, Samuel J. ; Ade, Harald ; Zhang, Chenjie ; Yao, Jianlin ; Li, Yaowen ; Li, Yongfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-8d9fdaf9d9a272fbbe52a70e9959bc354924caa7b1af20d8e6febace9d1435f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alignment</topic><topic>Aniline</topic><topic>Backbone</topic><topic>Charge transfer</topic><topic>Energy</topic><topic>Energy conversion efficiency</topic><topic>energy disorder</topic><topic>Energy levels</topic><topic>high mobility</topic><topic>hole transport</topic><topic>Materials science</topic><topic>molecular packing</topic><topic>Performance enhancement</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>p–i–n planar perovskite solar cells</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Guiying</creatorcontrib><creatorcontrib>Xue, Rongming</creatorcontrib><creatorcontrib>Stuard, Samuel J.</creatorcontrib><creatorcontrib>Ade, Harald</creatorcontrib><creatorcontrib>Zhang, Chenjie</creatorcontrib><creatorcontrib>Yao, Jianlin</creatorcontrib><creatorcontrib>Li, Yaowen</creatorcontrib><creatorcontrib>Li, Yongfang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Guiying</au><au>Xue, Rongming</au><au>Stuard, Samuel J.</au><au>Ade, Harald</au><au>Zhang, Chenjie</au><au>Yao, Jianlin</au><au>Li, Yaowen</au><au>Li, Yongfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing Energy Disorder of Hole Transport Layer by Charge Transfer Complex for High Performance p–i–n Perovskite Solar Cells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>33</volume><issue>13</issue><spage>e2006753</spage><epage>n/a</epage><pages>e2006753-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Solution‐processed organic semiconductor charge‐transport layers (OS‐CTLs) with high mobility, low trap density, and energy level alignment have dominated the important progress in p–i–n planar perovskite solar cells (pero‐SCs). Unfortunately, their inevitable long chains result in weak molecular stacking, which is likely to generate high energy disorder and deteriorate the charge‐transport ability of OS‐CTLs. Here, a charge‐transfer complex (CTC) strategy to reduce the energy disorder in the OS‐CTLs by doping an organic semiconductor, 4,4′‐(4,8‐bis(5‐(trimethylsilyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)bis(N,N‐bis(4‐methoxyphenyl)aniline) (BDT‐Si), in a commercial hole‐transport layer (HTL), poly[bis(4‐phenyl) (2,4,6‐trimethylphenyl)amine (PTAA), is proposed. The formation of the CTC makes the PTAA conjugated backbone electron‐deficient, resulting in a quinoidal and stiffer character, which is likely to planarize the PTAA backbone and enhance the ordering of the film in nanoscale. The resultant HTL exhibits a reduced energy disorder, which simultaneously promotes hole transport in the HTL, hole extraction at the interface, energy level alignment, and quasi‐Fermi level splitting in the device. As a result, the p–i–n planar pero‐SCs with optimized HTL exhibit the best power conversion efficiency of 21.87% with good operating stability. This finding demonstrates that the CTC strategy is an effective way to reduce the energy disorder in HTLs and to improve the performance of planar pero‐SCs. A charge‐transfer complex strategy to reduce the energy disorder of organic semiconductor (OS) charge transport layers (CTLs) by doping a well‐designed OS (BDT‐Si) with electron‐acceptor features in a commercial hole‐transport material (PTAA) is proposed. As a result, the p–i–n planar perovskite solar cells with the optimized hole‐transport layer exhibit the best power conversion efficiency of 21.87%, and good operating stability at maximum power point under continuous illumination.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33634532</pmid><doi>10.1002/adma.202006753</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7229-582X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-04, Vol.33 (13), p.e2006753-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2494304352
source Access via Wiley Online Library
subjects Alignment
Aniline
Backbone
Charge transfer
Energy
Energy conversion efficiency
energy disorder
Energy levels
high mobility
hole transport
Materials science
molecular packing
Performance enhancement
Perovskites
Photovoltaic cells
p–i–n planar perovskite solar cells
Solar cells
title Reducing Energy Disorder of Hole Transport Layer by Charge Transfer Complex for High Performance p–i–n Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20Energy%20Disorder%20of%20Hole%20Transport%20Layer%20by%20Charge%20Transfer%20Complex%20for%20High%20Performance%20p%E2%80%93i%E2%80%93n%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Xu,%20Guiying&rft.date=2021-04-01&rft.volume=33&rft.issue=13&rft.spage=e2006753&rft.epage=n/a&rft.pages=e2006753-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202006753&rft_dat=%3Cproquest_cross%3E2509224534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509224534&rft_id=info:pmid/33634532&rfr_iscdi=true