Semisupervised Feature Selection via Structured Manifold Learning

Recently, semisupervised feature selection has gained more attention in many real applications due to the high cost of obtaining labeled data. However, existing methods cannot solve the ``multimodality'' problem that samples in some classes lie in several separate clusters. To solve the mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2022-07, Vol.PP (7), p.1-11
Hauptverfasser: Chen, Xiaojun, Chen, Renjie, Wu, Qingyao, Nie, Feiping, Yang, Min, Mao, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 7
container_start_page 1
container_title IEEE transactions on cybernetics
container_volume PP
creator Chen, Xiaojun
Chen, Renjie
Wu, Qingyao
Nie, Feiping
Yang, Min
Mao, Rui
description Recently, semisupervised feature selection has gained more attention in many real applications due to the high cost of obtaining labeled data. However, existing methods cannot solve the ``multimodality'' problem that samples in some classes lie in several separate clusters. To solve the multimodality problem, this article proposes a new feature selection method for semisupervised task, namely, semisupervised structured manifold learning (SSML). The new method learns a new structured graph which consists of more clusters than the known classes. Meanwhile, we propose to exploit the submanifold in both labeled data and unlabeled data by consuming the nearest neighbors of each object in both labeled and unlabeled objects. An iterative optimization algorithm is proposed to solve the new model. A series of experiments was conducted on both synthetic and real-world datasets and the experimental results verify the ability of the new method to solve the multimodality problem and its superior performance compared with the state-of-the-art methods.
doi_str_mv 10.1109/TCYB.2021.3052847
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2494281083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9364918</ieee_id><sourcerecordid>2494281083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6767700c569285d062c4456821dcea573549dc63bc8c115ac9c0bfd29e254eae3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRbKn9ASJIwIuX1H0_jrVYFSoeWg-elu1mIilpUneTgv_ehNYe3MssM988-BC6JnhCCDYPq9nn44RiSiYMC6q5OkNDSqROKVXi_PSXaoDGMW5w93SXMvoSDRiTTGiihmi6hG0R2x2EfREhS-bgmjZAsoQSfFPUVbIvXLJsQuv7fJa8uarI6zJLFuBCVVRfV-gid2WE8TGO0Mf8aTV7SRfvz6-z6SL1jJsmlUoqhbEX0lAtMiyp51xITUnmwQnFBDeZl2zttSdEOG88XucZNUAFBwdshO4Pc3eh_m4hNrY73ENZugrqNlrKDaeaYM069O4fuqnbUHXXWSq1IMLobuEIkQPlQx1jgNzuQrF14ccSbHvFtldse8X2qLjruT1ObtdbyE4df0I74OYAFABwKhsmuSGa_QIKGX4C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685159857</pqid></control><display><type>article</type><title>Semisupervised Feature Selection via Structured Manifold Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Xiaojun ; Chen, Renjie ; Wu, Qingyao ; Nie, Feiping ; Yang, Min ; Mao, Rui</creator><creatorcontrib>Chen, Xiaojun ; Chen, Renjie ; Wu, Qingyao ; Nie, Feiping ; Yang, Min ; Mao, Rui</creatorcontrib><description>Recently, semisupervised feature selection has gained more attention in many real applications due to the high cost of obtaining labeled data. However, existing methods cannot solve the ``multimodality'' problem that samples in some classes lie in several separate clusters. To solve the multimodality problem, this article proposes a new feature selection method for semisupervised task, namely, semisupervised structured manifold learning (SSML). The new method learns a new structured graph which consists of more clusters than the known classes. Meanwhile, we propose to exploit the submanifold in both labeled data and unlabeled data by consuming the nearest neighbors of each object in both labeled and unlabeled objects. An iterative optimization algorithm is proposed to solve the new model. A series of experiments was conducted on both synthetic and real-world datasets and the experimental results verify the ability of the new method to solve the multimodality problem and its superior performance compared with the state-of-the-art methods.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2021.3052847</identifier><identifier>PMID: 33635817</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Clusters ; Feature extraction ; Feature selection ; Iterative methods ; Laplace equations ; local structure learning ; Machine learning ; Manifold learning ; Manifolds ; Manifolds (mathematics) ; Optimization ; semisupervised feature selection ; structure learning ; Task analysis ; Training ; Training data</subject><ispartof>IEEE transactions on cybernetics, 2022-07, Vol.PP (7), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6767700c569285d062c4456821dcea573549dc63bc8c115ac9c0bfd29e254eae3</citedby><cites>FETCH-LOGICAL-c349t-6767700c569285d062c4456821dcea573549dc63bc8c115ac9c0bfd29e254eae3</cites><orcidid>0000-0002-3645-5520 ; 0000-0002-6771-3932 ; 0000-0002-2818-4652 ; 0000-0002-0871-6519 ; 0000-0001-7345-5071 ; 0000-0002-8564-7289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9364918$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9364918$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33635817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xiaojun</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><creatorcontrib>Wu, Qingyao</creatorcontrib><creatorcontrib>Nie, Feiping</creatorcontrib><creatorcontrib>Yang, Min</creatorcontrib><creatorcontrib>Mao, Rui</creatorcontrib><title>Semisupervised Feature Selection via Structured Manifold Learning</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Recently, semisupervised feature selection has gained more attention in many real applications due to the high cost of obtaining labeled data. However, existing methods cannot solve the ``multimodality'' problem that samples in some classes lie in several separate clusters. To solve the multimodality problem, this article proposes a new feature selection method for semisupervised task, namely, semisupervised structured manifold learning (SSML). The new method learns a new structured graph which consists of more clusters than the known classes. Meanwhile, we propose to exploit the submanifold in both labeled data and unlabeled data by consuming the nearest neighbors of each object in both labeled and unlabeled objects. An iterative optimization algorithm is proposed to solve the new model. A series of experiments was conducted on both synthetic and real-world datasets and the experimental results verify the ability of the new method to solve the multimodality problem and its superior performance compared with the state-of-the-art methods.</description><subject>Algorithms</subject><subject>Clusters</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Iterative methods</subject><subject>Laplace equations</subject><subject>local structure learning</subject><subject>Machine learning</subject><subject>Manifold learning</subject><subject>Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>Optimization</subject><subject>semisupervised feature selection</subject><subject>structure learning</subject><subject>Task analysis</subject><subject>Training</subject><subject>Training data</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRbKn9ASJIwIuX1H0_jrVYFSoeWg-elu1mIilpUneTgv_ehNYe3MssM988-BC6JnhCCDYPq9nn44RiSiYMC6q5OkNDSqROKVXi_PSXaoDGMW5w93SXMvoSDRiTTGiihmi6hG0R2x2EfREhS-bgmjZAsoQSfFPUVbIvXLJsQuv7fJa8uarI6zJLFuBCVVRfV-gid2WE8TGO0Mf8aTV7SRfvz6-z6SL1jJsmlUoqhbEX0lAtMiyp51xITUnmwQnFBDeZl2zttSdEOG88XucZNUAFBwdshO4Pc3eh_m4hNrY73ENZugrqNlrKDaeaYM069O4fuqnbUHXXWSq1IMLobuEIkQPlQx1jgNzuQrF14ccSbHvFtldse8X2qLjruT1ObtdbyE4df0I74OYAFABwKhsmuSGa_QIKGX4C</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Chen, Xiaojun</creator><creator>Chen, Renjie</creator><creator>Wu, Qingyao</creator><creator>Nie, Feiping</creator><creator>Yang, Min</creator><creator>Mao, Rui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3645-5520</orcidid><orcidid>https://orcid.org/0000-0002-6771-3932</orcidid><orcidid>https://orcid.org/0000-0002-2818-4652</orcidid><orcidid>https://orcid.org/0000-0002-0871-6519</orcidid><orcidid>https://orcid.org/0000-0001-7345-5071</orcidid><orcidid>https://orcid.org/0000-0002-8564-7289</orcidid></search><sort><creationdate>20220701</creationdate><title>Semisupervised Feature Selection via Structured Manifold Learning</title><author>Chen, Xiaojun ; Chen, Renjie ; Wu, Qingyao ; Nie, Feiping ; Yang, Min ; Mao, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6767700c569285d062c4456821dcea573549dc63bc8c115ac9c0bfd29e254eae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Clusters</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Iterative methods</topic><topic>Laplace equations</topic><topic>local structure learning</topic><topic>Machine learning</topic><topic>Manifold learning</topic><topic>Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>Optimization</topic><topic>semisupervised feature selection</topic><topic>structure learning</topic><topic>Task analysis</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaojun</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><creatorcontrib>Wu, Qingyao</creatorcontrib><creatorcontrib>Nie, Feiping</creatorcontrib><creatorcontrib>Yang, Min</creatorcontrib><creatorcontrib>Mao, Rui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xiaojun</au><au>Chen, Renjie</au><au>Wu, Qingyao</au><au>Nie, Feiping</au><au>Yang, Min</au><au>Mao, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semisupervised Feature Selection via Structured Manifold Learning</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>PP</volume><issue>7</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Recently, semisupervised feature selection has gained more attention in many real applications due to the high cost of obtaining labeled data. However, existing methods cannot solve the ``multimodality'' problem that samples in some classes lie in several separate clusters. To solve the multimodality problem, this article proposes a new feature selection method for semisupervised task, namely, semisupervised structured manifold learning (SSML). The new method learns a new structured graph which consists of more clusters than the known classes. Meanwhile, we propose to exploit the submanifold in both labeled data and unlabeled data by consuming the nearest neighbors of each object in both labeled and unlabeled objects. An iterative optimization algorithm is proposed to solve the new model. A series of experiments was conducted on both synthetic and real-world datasets and the experimental results verify the ability of the new method to solve the multimodality problem and its superior performance compared with the state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33635817</pmid><doi>10.1109/TCYB.2021.3052847</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3645-5520</orcidid><orcidid>https://orcid.org/0000-0002-6771-3932</orcidid><orcidid>https://orcid.org/0000-0002-2818-4652</orcidid><orcidid>https://orcid.org/0000-0002-0871-6519</orcidid><orcidid>https://orcid.org/0000-0001-7345-5071</orcidid><orcidid>https://orcid.org/0000-0002-8564-7289</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2022-07, Vol.PP (7), p.1-11
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_miscellaneous_2494281083
source IEEE Electronic Library (IEL)
subjects Algorithms
Clusters
Feature extraction
Feature selection
Iterative methods
Laplace equations
local structure learning
Machine learning
Manifold learning
Manifolds
Manifolds (mathematics)
Optimization
semisupervised feature selection
structure learning
Task analysis
Training
Training data
title Semisupervised Feature Selection via Structured Manifold Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semisupervised%20Feature%20Selection%20via%20Structured%20Manifold%20Learning&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Chen,%20Xiaojun&rft.date=2022-07-01&rft.volume=PP&rft.issue=7&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2021.3052847&rft_dat=%3Cproquest_RIE%3E2494281083%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685159857&rft_id=info:pmid/33635817&rft_ieee_id=9364918&rfr_iscdi=true