Towards Intelligent Power Electronics-Dominated Grid via Machine Learning Techniques
Nowadays, to meet the vision of employing 100% renewable-based electricity generation, the conventional power system is evolving into power electronics-dominated grid (PEDG). This transition leads to an amplified complexity and significance for device and system-level control schemes to maintain res...
Gespeichert in:
Veröffentlicht in: | IEEE power electronics magazine 2021-03, Vol.8 (1), p.28-38 |
---|---|
Hauptverfasser: | , , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 1 |
container_start_page | 28 |
container_title | IEEE power electronics magazine |
container_volume | 8 |
creator | Abu-Rub, Omar H. Fard, Amin Y. Umar, Muhammad Farooq Hosseinzadehtaher, Mohsen Shadmands, Mohammad B. |
description | Nowadays, to meet the vision of employing 100% renewable-based electricity generation, the conventional power system is evolving into power electronics-dominated grid (PEDG). This transition leads to an amplified complexity and significance for device and system-level control schemes to maintain resiliency, reliability, and operational stability. Recently, in various fields of engineering and science, the machine learning (ML)-based schemes have exhibited outstanding performance. Considering abundance of data in the PEDG, MLbased approaches illustrate promising potential to be adopted in this new energy paradigm. Similarly, the MLinspired approaches have been attracting many researchers in power electronics and power systems fields, who are trying to solve the challenges posed by the PEDG concept. This article presents cutting-edge ML applications in the PEDG and provides a futuristic research roadmap. |
doi_str_mv | 10.1109/MPEL.2020.3047506 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2493595261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9359837</ieee_id><sourcerecordid>2493595261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-5da4247f44421727d3fb35e49919ff3c4213e5925fd135e6c2b1ef17cf0c1caa3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EElXpAyAuOXJJ8W-Mj6iUUikVPYSz5Trr1ih1ip1S8fYkKuppV6OZWe2H0D3BU0Kwelqt5-WUYoqnDHMpcHGFRpRRlStKxPVlx_IWTVL6whgTKoQkaoSqqj2ZWKdsGTpoGr-F0GXr9gQxmzdgu9gGb1P-2u59MB3U2SL6OvvxJlsZu_MBshJMDD5sswrsLvjvI6Q7dONMk2DyP8fo821ezd7z8mOxnL2UuWW86HJRG065dJxzSiSVNXMbJoArRZRzzPYqA6GocDXp9cLSDQFHpHXYEmsMG6PHc-8htsPdTu99sv0bJkB7TJpyxYQStCC9lZytNrYpRXD6EP3exF9NsB4g6gGiHiDqf4h95uGc8QBw8Q-Vz0yyP1TfbaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2493595261</pqid></control><display><type>magazinearticle</type><title>Towards Intelligent Power Electronics-Dominated Grid via Machine Learning Techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Abu-Rub, Omar H. ; Fard, Amin Y. ; Umar, Muhammad Farooq ; Hosseinzadehtaher, Mohsen ; Shadmands, Mohammad B.</creator><creatorcontrib>Abu-Rub, Omar H. ; Fard, Amin Y. ; Umar, Muhammad Farooq ; Hosseinzadehtaher, Mohsen ; Shadmands, Mohammad B.</creatorcontrib><description>Nowadays, to meet the vision of employing 100% renewable-based electricity generation, the conventional power system is evolving into power electronics-dominated grid (PEDG). This transition leads to an amplified complexity and significance for device and system-level control schemes to maintain resiliency, reliability, and operational stability. Recently, in various fields of engineering and science, the machine learning (ML)-based schemes have exhibited outstanding performance. Considering abundance of data in the PEDG, MLbased approaches illustrate promising potential to be adopted in this new energy paradigm. Similarly, the MLinspired approaches have been attracting many researchers in power electronics and power systems fields, who are trying to solve the challenges posed by the PEDG concept. This article presents cutting-edge ML applications in the PEDG and provides a futuristic research roadmap.</description><identifier>ISSN: 2329-9207</identifier><identifier>EISSN: 2329-9215</identifier><identifier>DOI: 10.1109/MPEL.2020.3047506</identifier><identifier>CODEN: IPEMDG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Control stability ; Electric power systems ; Electronics ; Machine learning ; Performance evaluation ; Power electronics ; Power system reliability ; Power system stability ; Reliability ; Reliability engineering ; Resilience</subject><ispartof>IEEE power electronics magazine, 2021-03, Vol.8 (1), p.28-38</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-5da4247f44421727d3fb35e49919ff3c4213e5925fd135e6c2b1ef17cf0c1caa3</citedby><cites>FETCH-LOGICAL-c346t-5da4247f44421727d3fb35e49919ff3c4213e5925fd135e6c2b1ef17cf0c1caa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9359837$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>777,781,793,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9359837$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abu-Rub, Omar H.</creatorcontrib><creatorcontrib>Fard, Amin Y.</creatorcontrib><creatorcontrib>Umar, Muhammad Farooq</creatorcontrib><creatorcontrib>Hosseinzadehtaher, Mohsen</creatorcontrib><creatorcontrib>Shadmands, Mohammad B.</creatorcontrib><title>Towards Intelligent Power Electronics-Dominated Grid via Machine Learning Techniques</title><title>IEEE power electronics magazine</title><addtitle>MPEL</addtitle><description>Nowadays, to meet the vision of employing 100% renewable-based electricity generation, the conventional power system is evolving into power electronics-dominated grid (PEDG). This transition leads to an amplified complexity and significance for device and system-level control schemes to maintain resiliency, reliability, and operational stability. Recently, in various fields of engineering and science, the machine learning (ML)-based schemes have exhibited outstanding performance. Considering abundance of data in the PEDG, MLbased approaches illustrate promising potential to be adopted in this new energy paradigm. Similarly, the MLinspired approaches have been attracting many researchers in power electronics and power systems fields, who are trying to solve the challenges posed by the PEDG concept. This article presents cutting-edge ML applications in the PEDG and provides a futuristic research roadmap.</description><subject>Control stability</subject><subject>Electric power systems</subject><subject>Electronics</subject><subject>Machine learning</subject><subject>Performance evaluation</subject><subject>Power electronics</subject><subject>Power system reliability</subject><subject>Power system stability</subject><subject>Reliability</subject><subject>Reliability engineering</subject><subject>Resilience</subject><issn>2329-9207</issn><issn>2329-9215</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2021</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EElXpAyAuOXJJ8W-Mj6iUUikVPYSz5Trr1ih1ip1S8fYkKuppV6OZWe2H0D3BU0Kwelqt5-WUYoqnDHMpcHGFRpRRlStKxPVlx_IWTVL6whgTKoQkaoSqqj2ZWKdsGTpoGr-F0GXr9gQxmzdgu9gGb1P-2u59MB3U2SL6OvvxJlsZu_MBshJMDD5sswrsLvjvI6Q7dONMk2DyP8fo821ezd7z8mOxnL2UuWW86HJRG065dJxzSiSVNXMbJoArRZRzzPYqA6GocDXp9cLSDQFHpHXYEmsMG6PHc-8htsPdTu99sv0bJkB7TJpyxYQStCC9lZytNrYpRXD6EP3exF9NsB4g6gGiHiDqf4h95uGc8QBw8Q-Vz0yyP1TfbaE</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Abu-Rub, Omar H.</creator><creator>Fard, Amin Y.</creator><creator>Umar, Muhammad Farooq</creator><creator>Hosseinzadehtaher, Mohsen</creator><creator>Shadmands, Mohammad B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20210301</creationdate><title>Towards Intelligent Power Electronics-Dominated Grid via Machine Learning Techniques</title><author>Abu-Rub, Omar H. ; Fard, Amin Y. ; Umar, Muhammad Farooq ; Hosseinzadehtaher, Mohsen ; Shadmands, Mohammad B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-5da4247f44421727d3fb35e49919ff3c4213e5925fd135e6c2b1ef17cf0c1caa3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Control stability</topic><topic>Electric power systems</topic><topic>Electronics</topic><topic>Machine learning</topic><topic>Performance evaluation</topic><topic>Power electronics</topic><topic>Power system reliability</topic><topic>Power system stability</topic><topic>Reliability</topic><topic>Reliability engineering</topic><topic>Resilience</topic><toplevel>online_resources</toplevel><creatorcontrib>Abu-Rub, Omar H.</creatorcontrib><creatorcontrib>Fard, Amin Y.</creatorcontrib><creatorcontrib>Umar, Muhammad Farooq</creatorcontrib><creatorcontrib>Hosseinzadehtaher, Mohsen</creatorcontrib><creatorcontrib>Shadmands, Mohammad B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE power electronics magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abu-Rub, Omar H.</au><au>Fard, Amin Y.</au><au>Umar, Muhammad Farooq</au><au>Hosseinzadehtaher, Mohsen</au><au>Shadmands, Mohammad B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Intelligent Power Electronics-Dominated Grid via Machine Learning Techniques</atitle><jtitle>IEEE power electronics magazine</jtitle><stitle>MPEL</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>8</volume><issue>1</issue><spage>28</spage><epage>38</epage><pages>28-38</pages><issn>2329-9207</issn><eissn>2329-9215</eissn><coden>IPEMDG</coden><abstract>Nowadays, to meet the vision of employing 100% renewable-based electricity generation, the conventional power system is evolving into power electronics-dominated grid (PEDG). This transition leads to an amplified complexity and significance for device and system-level control schemes to maintain resiliency, reliability, and operational stability. Recently, in various fields of engineering and science, the machine learning (ML)-based schemes have exhibited outstanding performance. Considering abundance of data in the PEDG, MLbased approaches illustrate promising potential to be adopted in this new energy paradigm. Similarly, the MLinspired approaches have been attracting many researchers in power electronics and power systems fields, who are trying to solve the challenges posed by the PEDG concept. This article presents cutting-edge ML applications in the PEDG and provides a futuristic research roadmap.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/MPEL.2020.3047506</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2329-9207 |
ispartof | IEEE power electronics magazine, 2021-03, Vol.8 (1), p.28-38 |
issn | 2329-9207 2329-9215 |
language | eng |
recordid | cdi_proquest_miscellaneous_2493595261 |
source | IEEE Electronic Library (IEL) |
subjects | Control stability Electric power systems Electronics Machine learning Performance evaluation Power electronics Power system reliability Power system stability Reliability Reliability engineering Resilience |
title | Towards Intelligent Power Electronics-Dominated Grid via Machine Learning Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A18%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Intelligent%20Power%20Electronics-Dominated%20Grid%20via%20Machine%20Learning%20Techniques&rft.jtitle=IEEE%20power%20electronics%20magazine&rft.au=Abu-Rub,%20Omar%20H.&rft.date=2021-03-01&rft.volume=8&rft.issue=1&rft.spage=28&rft.epage=38&rft.pages=28-38&rft.issn=2329-9207&rft.eissn=2329-9215&rft.coden=IPEMDG&rft_id=info:doi/10.1109/MPEL.2020.3047506&rft_dat=%3Cproquest_RIE%3E2493595261%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493595261&rft_id=info:pmid/&rft_ieee_id=9359837&rfr_iscdi=true |