Towards Intelligent Power Electronics-Dominated Grid via Machine Learning Techniques

Nowadays, to meet the vision of employing 100% renewable-based electricity generation, the conventional power system is evolving into power electronics-dominated grid (PEDG). This transition leads to an amplified complexity and significance for device and system-level control schemes to maintain res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE power electronics magazine 2021-03, Vol.8 (1), p.28-38
Hauptverfasser: Abu-Rub, Omar H., Fard, Amin Y., Umar, Muhammad Farooq, Hosseinzadehtaher, Mohsen, Shadmands, Mohammad B.
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 1
container_start_page 28
container_title IEEE power electronics magazine
container_volume 8
creator Abu-Rub, Omar H.
Fard, Amin Y.
Umar, Muhammad Farooq
Hosseinzadehtaher, Mohsen
Shadmands, Mohammad B.
description Nowadays, to meet the vision of employing 100% renewable-based electricity generation, the conventional power system is evolving into power electronics-dominated grid (PEDG). This transition leads to an amplified complexity and significance for device and system-level control schemes to maintain resiliency, reliability, and operational stability. Recently, in various fields of engineering and science, the machine learning (ML)-based schemes have exhibited outstanding performance. Considering abundance of data in the PEDG, MLbased approaches illustrate promising potential to be adopted in this new energy paradigm. Similarly, the MLinspired approaches have been attracting many researchers in power electronics and power systems fields, who are trying to solve the challenges posed by the PEDG concept. This article presents cutting-edge ML applications in the PEDG and provides a futuristic research roadmap.
doi_str_mv 10.1109/MPEL.2020.3047506
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2493595261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9359837</ieee_id><sourcerecordid>2493595261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-5da4247f44421727d3fb35e49919ff3c4213e5925fd135e6c2b1ef17cf0c1caa3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EElXpAyAuOXJJ8W-Mj6iUUikVPYSz5Trr1ih1ip1S8fYkKuppV6OZWe2H0D3BU0Kwelqt5-WUYoqnDHMpcHGFRpRRlStKxPVlx_IWTVL6whgTKoQkaoSqqj2ZWKdsGTpoGr-F0GXr9gQxmzdgu9gGb1P-2u59MB3U2SL6OvvxJlsZu_MBshJMDD5sswrsLvjvI6Q7dONMk2DyP8fo821ezd7z8mOxnL2UuWW86HJRG065dJxzSiSVNXMbJoArRZRzzPYqA6GocDXp9cLSDQFHpHXYEmsMG6PHc-8htsPdTu99sv0bJkB7TJpyxYQStCC9lZytNrYpRXD6EP3exF9NsB4g6gGiHiDqf4h95uGc8QBw8Q-Vz0yyP1TfbaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2493595261</pqid></control><display><type>magazinearticle</type><title>Towards Intelligent Power Electronics-Dominated Grid via Machine Learning Techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Abu-Rub, Omar H. ; Fard, Amin Y. ; Umar, Muhammad Farooq ; Hosseinzadehtaher, Mohsen ; Shadmands, Mohammad B.</creator><creatorcontrib>Abu-Rub, Omar H. ; Fard, Amin Y. ; Umar, Muhammad Farooq ; Hosseinzadehtaher, Mohsen ; Shadmands, Mohammad B.</creatorcontrib><description>Nowadays, to meet the vision of employing 100% renewable-based electricity generation, the conventional power system is evolving into power electronics-dominated grid (PEDG). This transition leads to an amplified complexity and significance for device and system-level control schemes to maintain resiliency, reliability, and operational stability. Recently, in various fields of engineering and science, the machine learning (ML)-based schemes have exhibited outstanding performance. Considering abundance of data in the PEDG, MLbased approaches illustrate promising potential to be adopted in this new energy paradigm. Similarly, the MLinspired approaches have been attracting many researchers in power electronics and power systems fields, who are trying to solve the challenges posed by the PEDG concept. This article presents cutting-edge ML applications in the PEDG and provides a futuristic research roadmap.</description><identifier>ISSN: 2329-9207</identifier><identifier>EISSN: 2329-9215</identifier><identifier>DOI: 10.1109/MPEL.2020.3047506</identifier><identifier>CODEN: IPEMDG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Control stability ; Electric power systems ; Electronics ; Machine learning ; Performance evaluation ; Power electronics ; Power system reliability ; Power system stability ; Reliability ; Reliability engineering ; Resilience</subject><ispartof>IEEE power electronics magazine, 2021-03, Vol.8 (1), p.28-38</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-5da4247f44421727d3fb35e49919ff3c4213e5925fd135e6c2b1ef17cf0c1caa3</citedby><cites>FETCH-LOGICAL-c346t-5da4247f44421727d3fb35e49919ff3c4213e5925fd135e6c2b1ef17cf0c1caa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9359837$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>777,781,793,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9359837$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abu-Rub, Omar H.</creatorcontrib><creatorcontrib>Fard, Amin Y.</creatorcontrib><creatorcontrib>Umar, Muhammad Farooq</creatorcontrib><creatorcontrib>Hosseinzadehtaher, Mohsen</creatorcontrib><creatorcontrib>Shadmands, Mohammad B.</creatorcontrib><title>Towards Intelligent Power Electronics-Dominated Grid via Machine Learning Techniques</title><title>IEEE power electronics magazine</title><addtitle>MPEL</addtitle><description>Nowadays, to meet the vision of employing 100% renewable-based electricity generation, the conventional power system is evolving into power electronics-dominated grid (PEDG). This transition leads to an amplified complexity and significance for device and system-level control schemes to maintain resiliency, reliability, and operational stability. Recently, in various fields of engineering and science, the machine learning (ML)-based schemes have exhibited outstanding performance. Considering abundance of data in the PEDG, MLbased approaches illustrate promising potential to be adopted in this new energy paradigm. Similarly, the MLinspired approaches have been attracting many researchers in power electronics and power systems fields, who are trying to solve the challenges posed by the PEDG concept. This article presents cutting-edge ML applications in the PEDG and provides a futuristic research roadmap.</description><subject>Control stability</subject><subject>Electric power systems</subject><subject>Electronics</subject><subject>Machine learning</subject><subject>Performance evaluation</subject><subject>Power electronics</subject><subject>Power system reliability</subject><subject>Power system stability</subject><subject>Reliability</subject><subject>Reliability engineering</subject><subject>Resilience</subject><issn>2329-9207</issn><issn>2329-9215</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2021</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EElXpAyAuOXJJ8W-Mj6iUUikVPYSz5Trr1ih1ip1S8fYkKuppV6OZWe2H0D3BU0Kwelqt5-WUYoqnDHMpcHGFRpRRlStKxPVlx_IWTVL6whgTKoQkaoSqqj2ZWKdsGTpoGr-F0GXr9gQxmzdgu9gGb1P-2u59MB3U2SL6OvvxJlsZu_MBshJMDD5sswrsLvjvI6Q7dONMk2DyP8fo821ezd7z8mOxnL2UuWW86HJRG065dJxzSiSVNXMbJoArRZRzzPYqA6GocDXp9cLSDQFHpHXYEmsMG6PHc-8htsPdTu99sv0bJkB7TJpyxYQStCC9lZytNrYpRXD6EP3exF9NsB4g6gGiHiDqf4h95uGc8QBw8Q-Vz0yyP1TfbaE</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Abu-Rub, Omar H.</creator><creator>Fard, Amin Y.</creator><creator>Umar, Muhammad Farooq</creator><creator>Hosseinzadehtaher, Mohsen</creator><creator>Shadmands, Mohammad B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20210301</creationdate><title>Towards Intelligent Power Electronics-Dominated Grid via Machine Learning Techniques</title><author>Abu-Rub, Omar H. ; Fard, Amin Y. ; Umar, Muhammad Farooq ; Hosseinzadehtaher, Mohsen ; Shadmands, Mohammad B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-5da4247f44421727d3fb35e49919ff3c4213e5925fd135e6c2b1ef17cf0c1caa3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Control stability</topic><topic>Electric power systems</topic><topic>Electronics</topic><topic>Machine learning</topic><topic>Performance evaluation</topic><topic>Power electronics</topic><topic>Power system reliability</topic><topic>Power system stability</topic><topic>Reliability</topic><topic>Reliability engineering</topic><topic>Resilience</topic><toplevel>online_resources</toplevel><creatorcontrib>Abu-Rub, Omar H.</creatorcontrib><creatorcontrib>Fard, Amin Y.</creatorcontrib><creatorcontrib>Umar, Muhammad Farooq</creatorcontrib><creatorcontrib>Hosseinzadehtaher, Mohsen</creatorcontrib><creatorcontrib>Shadmands, Mohammad B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE power electronics magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abu-Rub, Omar H.</au><au>Fard, Amin Y.</au><au>Umar, Muhammad Farooq</au><au>Hosseinzadehtaher, Mohsen</au><au>Shadmands, Mohammad B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Intelligent Power Electronics-Dominated Grid via Machine Learning Techniques</atitle><jtitle>IEEE power electronics magazine</jtitle><stitle>MPEL</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>8</volume><issue>1</issue><spage>28</spage><epage>38</epage><pages>28-38</pages><issn>2329-9207</issn><eissn>2329-9215</eissn><coden>IPEMDG</coden><abstract>Nowadays, to meet the vision of employing 100% renewable-based electricity generation, the conventional power system is evolving into power electronics-dominated grid (PEDG). This transition leads to an amplified complexity and significance for device and system-level control schemes to maintain resiliency, reliability, and operational stability. Recently, in various fields of engineering and science, the machine learning (ML)-based schemes have exhibited outstanding performance. Considering abundance of data in the PEDG, MLbased approaches illustrate promising potential to be adopted in this new energy paradigm. Similarly, the MLinspired approaches have been attracting many researchers in power electronics and power systems fields, who are trying to solve the challenges posed by the PEDG concept. This article presents cutting-edge ML applications in the PEDG and provides a futuristic research roadmap.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/MPEL.2020.3047506</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-9207
ispartof IEEE power electronics magazine, 2021-03, Vol.8 (1), p.28-38
issn 2329-9207
2329-9215
language eng
recordid cdi_proquest_miscellaneous_2493595261
source IEEE Electronic Library (IEL)
subjects Control stability
Electric power systems
Electronics
Machine learning
Performance evaluation
Power electronics
Power system reliability
Power system stability
Reliability
Reliability engineering
Resilience
title Towards Intelligent Power Electronics-Dominated Grid via Machine Learning Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A18%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Intelligent%20Power%20Electronics-Dominated%20Grid%20via%20Machine%20Learning%20Techniques&rft.jtitle=IEEE%20power%20electronics%20magazine&rft.au=Abu-Rub,%20Omar%20H.&rft.date=2021-03-01&rft.volume=8&rft.issue=1&rft.spage=28&rft.epage=38&rft.pages=28-38&rft.issn=2329-9207&rft.eissn=2329-9215&rft.coden=IPEMDG&rft_id=info:doi/10.1109/MPEL.2020.3047506&rft_dat=%3Cproquest_RIE%3E2493595261%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493595261&rft_id=info:pmid/&rft_ieee_id=9359837&rfr_iscdi=true