On the Transformation of Genetic Effect Size from Logit to Liability Scale

Genetic effects on the liability scale are informative for describing the genetic architecture of binary traits, typically diseases. However, most genetic association analyses on binary traits are performed by logistic regression, and there is no straightforward method that transforms both effect si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavior genetics 2021-05, Vol.51 (3), p.215-222
Hauptverfasser: Wu, Tian, Sham, Pak Chung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue 3
container_start_page 215
container_title Behavior genetics
container_volume 51
creator Wu, Tian
Sham, Pak Chung
description Genetic effects on the liability scale are informative for describing the genetic architecture of binary traits, typically diseases. However, most genetic association analyses on binary traits are performed by logistic regression, and there is no straightforward method that transforms both effect size estimate and standard error from the logit scale to the liability scale. Here, we derive a simple linear transformation of the log odds ratio and its standard error for a single nucleotide polymorphism (SNP) to an effect size and standard error on the liability scale. We show by analytic calculations and simulations that this approximation is accurate when the disease is common and the SNP effect is small. We also apply this method to estimate the contribution of a SNP near the RET gene to the variance of Hirschsprung disease liability, and the age-specific contributions of APOE4 on the variance of Alzheimer’s disease liability. We discuss the approximate linear inter-relationships between genotype and effect sizes on the observed binary, logit, and liability scales, and the potential applications of the linear approximation to statistical power calculation for binary traits.
doi_str_mv 10.1007/s10519-021-10042-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2493459585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493459585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-836c8fd0034010a85c50d987d38523f462ae3f04b4f1e9a5bff181cecc80dc5e3</originalsourceid><addsrcrecordid>eNp9kEtPJCEURslEo63jH3BhSNzMpvTy6qKWE-MznbjQWROaujiYqkKBXrS_Xpz2kczCFbnhfB-XQ8ghgxMG0J5mBop1DXDW1Fnyhv8gM6Za0QjetVtkBgCs0VzKXbKX82Md-VyqHbIrxFzUGJ-Rm9uJlr9I75Odso9ptCXEiUZPL3HCEhw99x5doXfhBalPcaSL-BAKLZEugl2GIZQ1vXN2wJ9k29sh48H7uU_-XJzfn101i9vL67Pfi8aJVpVGi7nTvgcQEhhYrZyCvtNtL7Tiwss5tyg8yKX0DDurlt4zzRw6p6F3CsU--bXpfUrxeYW5mDFkh8NgJ4yrbLjshFSd0qqix_-hj3GVprqd4ar-vwWuZaX4hnIp5pzQm6cURpvWhoF5M202pk1VZv6ZNryGjt6rV8sR-8_Ih9oKiA2Q69X0gOnr7W9qXwGWD4bS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521270284</pqid></control><display><type>article</type><title>On the Transformation of Genetic Effect Size from Logit to Liability Scale</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>SpringerLink Journals</source><creator>Wu, Tian ; Sham, Pak Chung</creator><creatorcontrib>Wu, Tian ; Sham, Pak Chung</creatorcontrib><description>Genetic effects on the liability scale are informative for describing the genetic architecture of binary traits, typically diseases. However, most genetic association analyses on binary traits are performed by logistic regression, and there is no straightforward method that transforms both effect size estimate and standard error from the logit scale to the liability scale. Here, we derive a simple linear transformation of the log odds ratio and its standard error for a single nucleotide polymorphism (SNP) to an effect size and standard error on the liability scale. We show by analytic calculations and simulations that this approximation is accurate when the disease is common and the SNP effect is small. We also apply this method to estimate the contribution of a SNP near the RET gene to the variance of Hirschsprung disease liability, and the age-specific contributions of APOE4 on the variance of Alzheimer’s disease liability. We discuss the approximate linear inter-relationships between genotype and effect sizes on the observed binary, logit, and liability scales, and the potential applications of the linear approximation to statistical power calculation for binary traits.</description><identifier>ISSN: 0001-8244</identifier><identifier>EISSN: 1573-3297</identifier><identifier>DOI: 10.1007/s10519-021-10042-2</identifier><identifier>PMID: 33630212</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Age ; Age differences ; Alzheimer's disease ; Approximation ; Behavioral Science and Psychology ; Clinical Psychology ; Gene polymorphism ; Genetic analysis ; Genetic transformation ; Genotypes ; Health Psychology ; Hirschsprung's disease ; Liability ; Neurodegenerative diseases ; Original Research ; Psychology ; Public Health ; Ret protein ; Single-nucleotide polymorphism ; Statistical power ; Transformation</subject><ispartof>Behavior genetics, 2021-05, Vol.51 (3), p.215-222</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-836c8fd0034010a85c50d987d38523f462ae3f04b4f1e9a5bff181cecc80dc5e3</citedby><cites>FETCH-LOGICAL-c375t-836c8fd0034010a85c50d987d38523f462ae3f04b4f1e9a5bff181cecc80dc5e3</cites><orcidid>0000-0002-0304-3992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10519-021-10042-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10519-021-10042-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,12825,27901,27902,30976,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33630212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Tian</creatorcontrib><creatorcontrib>Sham, Pak Chung</creatorcontrib><title>On the Transformation of Genetic Effect Size from Logit to Liability Scale</title><title>Behavior genetics</title><addtitle>Behav Genet</addtitle><addtitle>Behav Genet</addtitle><description>Genetic effects on the liability scale are informative for describing the genetic architecture of binary traits, typically diseases. However, most genetic association analyses on binary traits are performed by logistic regression, and there is no straightforward method that transforms both effect size estimate and standard error from the logit scale to the liability scale. Here, we derive a simple linear transformation of the log odds ratio and its standard error for a single nucleotide polymorphism (SNP) to an effect size and standard error on the liability scale. We show by analytic calculations and simulations that this approximation is accurate when the disease is common and the SNP effect is small. We also apply this method to estimate the contribution of a SNP near the RET gene to the variance of Hirschsprung disease liability, and the age-specific contributions of APOE4 on the variance of Alzheimer’s disease liability. We discuss the approximate linear inter-relationships between genotype and effect sizes on the observed binary, logit, and liability scales, and the potential applications of the linear approximation to statistical power calculation for binary traits.</description><subject>Age</subject><subject>Age differences</subject><subject>Alzheimer's disease</subject><subject>Approximation</subject><subject>Behavioral Science and Psychology</subject><subject>Clinical Psychology</subject><subject>Gene polymorphism</subject><subject>Genetic analysis</subject><subject>Genetic transformation</subject><subject>Genotypes</subject><subject>Health Psychology</subject><subject>Hirschsprung's disease</subject><subject>Liability</subject><subject>Neurodegenerative diseases</subject><subject>Original Research</subject><subject>Psychology</subject><subject>Public Health</subject><subject>Ret protein</subject><subject>Single-nucleotide polymorphism</subject><subject>Statistical power</subject><subject>Transformation</subject><issn>0001-8244</issn><issn>1573-3297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtPJCEURslEo63jH3BhSNzMpvTy6qKWE-MznbjQWROaujiYqkKBXrS_Xpz2kczCFbnhfB-XQ8ghgxMG0J5mBop1DXDW1Fnyhv8gM6Za0QjetVtkBgCs0VzKXbKX82Md-VyqHbIrxFzUGJ-Rm9uJlr9I75Odso9ptCXEiUZPL3HCEhw99x5doXfhBalPcaSL-BAKLZEugl2GIZQ1vXN2wJ9k29sh48H7uU_-XJzfn101i9vL67Pfi8aJVpVGi7nTvgcQEhhYrZyCvtNtL7Tiwss5tyg8yKX0DDurlt4zzRw6p6F3CsU--bXpfUrxeYW5mDFkh8NgJ4yrbLjshFSd0qqix_-hj3GVprqd4ar-vwWuZaX4hnIp5pzQm6cURpvWhoF5M202pk1VZv6ZNryGjt6rV8sR-8_Ih9oKiA2Q69X0gOnr7W9qXwGWD4bS</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Wu, Tian</creator><creator>Sham, Pak Chung</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QG</scope><scope>7QJ</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>HEHIP</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2S</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0304-3992</orcidid></search><sort><creationdate>20210501</creationdate><title>On the Transformation of Genetic Effect Size from Logit to Liability Scale</title><author>Wu, Tian ; Sham, Pak Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-836c8fd0034010a85c50d987d38523f462ae3f04b4f1e9a5bff181cecc80dc5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Age differences</topic><topic>Alzheimer's disease</topic><topic>Approximation</topic><topic>Behavioral Science and Psychology</topic><topic>Clinical Psychology</topic><topic>Gene polymorphism</topic><topic>Genetic analysis</topic><topic>Genetic transformation</topic><topic>Genotypes</topic><topic>Health Psychology</topic><topic>Hirschsprung's disease</topic><topic>Liability</topic><topic>Neurodegenerative diseases</topic><topic>Original Research</topic><topic>Psychology</topic><topic>Public Health</topic><topic>Ret protein</topic><topic>Single-nucleotide polymorphism</topic><topic>Statistical power</topic><topic>Transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tian</creatorcontrib><creatorcontrib>Sham, Pak Chung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Sociology Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Sociology Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Behavior genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Tian</au><au>Sham, Pak Chung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Transformation of Genetic Effect Size from Logit to Liability Scale</atitle><jtitle>Behavior genetics</jtitle><stitle>Behav Genet</stitle><addtitle>Behav Genet</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>51</volume><issue>3</issue><spage>215</spage><epage>222</epage><pages>215-222</pages><issn>0001-8244</issn><eissn>1573-3297</eissn><abstract>Genetic effects on the liability scale are informative for describing the genetic architecture of binary traits, typically diseases. However, most genetic association analyses on binary traits are performed by logistic regression, and there is no straightforward method that transforms both effect size estimate and standard error from the logit scale to the liability scale. Here, we derive a simple linear transformation of the log odds ratio and its standard error for a single nucleotide polymorphism (SNP) to an effect size and standard error on the liability scale. We show by analytic calculations and simulations that this approximation is accurate when the disease is common and the SNP effect is small. We also apply this method to estimate the contribution of a SNP near the RET gene to the variance of Hirschsprung disease liability, and the age-specific contributions of APOE4 on the variance of Alzheimer’s disease liability. We discuss the approximate linear inter-relationships between genotype and effect sizes on the observed binary, logit, and liability scales, and the potential applications of the linear approximation to statistical power calculation for binary traits.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33630212</pmid><doi>10.1007/s10519-021-10042-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0304-3992</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-8244
ispartof Behavior genetics, 2021-05, Vol.51 (3), p.215-222
issn 0001-8244
1573-3297
language eng
recordid cdi_proquest_miscellaneous_2493459585
source Applied Social Sciences Index & Abstracts (ASSIA); SpringerLink Journals
subjects Age
Age differences
Alzheimer's disease
Approximation
Behavioral Science and Psychology
Clinical Psychology
Gene polymorphism
Genetic analysis
Genetic transformation
Genotypes
Health Psychology
Hirschsprung's disease
Liability
Neurodegenerative diseases
Original Research
Psychology
Public Health
Ret protein
Single-nucleotide polymorphism
Statistical power
Transformation
title On the Transformation of Genetic Effect Size from Logit to Liability Scale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Transformation%20of%20Genetic%20Effect%20Size%20from%20Logit%20to%20Liability%20Scale&rft.jtitle=Behavior%20genetics&rft.au=Wu,%20Tian&rft.date=2021-05-01&rft.volume=51&rft.issue=3&rft.spage=215&rft.epage=222&rft.pages=215-222&rft.issn=0001-8244&rft.eissn=1573-3297&rft_id=info:doi/10.1007/s10519-021-10042-2&rft_dat=%3Cproquest_cross%3E2493459585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521270284&rft_id=info:pmid/33630212&rfr_iscdi=true