On the Transformation of Genetic Effect Size from Logit to Liability Scale
Genetic effects on the liability scale are informative for describing the genetic architecture of binary traits, typically diseases. However, most genetic association analyses on binary traits are performed by logistic regression, and there is no straightforward method that transforms both effect si...
Gespeichert in:
Veröffentlicht in: | Behavior genetics 2021-05, Vol.51 (3), p.215-222 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 222 |
---|---|
container_issue | 3 |
container_start_page | 215 |
container_title | Behavior genetics |
container_volume | 51 |
creator | Wu, Tian Sham, Pak Chung |
description | Genetic effects on the liability scale are informative for describing the genetic architecture of binary traits, typically diseases. However, most genetic association analyses on binary traits are performed by logistic regression, and there is no straightforward method that transforms both effect size estimate and standard error from the logit scale to the liability scale. Here, we derive a simple linear transformation of the log odds ratio and its standard error for a single nucleotide polymorphism (SNP) to an effect size and standard error on the liability scale. We show by analytic calculations and simulations that this approximation is accurate when the disease is common and the SNP effect is small. We also apply this method to estimate the contribution of a SNP near the
RET
gene to the variance of Hirschsprung disease liability, and the age-specific contributions of
APOE4
on the variance of Alzheimer’s disease liability. We discuss the approximate linear inter-relationships between genotype and effect sizes on the observed binary, logit, and liability scales, and the potential applications of the linear approximation to statistical power calculation for binary traits. |
doi_str_mv | 10.1007/s10519-021-10042-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2493459585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493459585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-836c8fd0034010a85c50d987d38523f462ae3f04b4f1e9a5bff181cecc80dc5e3</originalsourceid><addsrcrecordid>eNp9kEtPJCEURslEo63jH3BhSNzMpvTy6qKWE-MznbjQWROaujiYqkKBXrS_Xpz2kczCFbnhfB-XQ8ghgxMG0J5mBop1DXDW1Fnyhv8gM6Za0QjetVtkBgCs0VzKXbKX82Md-VyqHbIrxFzUGJ-Rm9uJlr9I75Odso9ptCXEiUZPL3HCEhw99x5doXfhBalPcaSL-BAKLZEugl2GIZQ1vXN2wJ9k29sh48H7uU_-XJzfn101i9vL67Pfi8aJVpVGi7nTvgcQEhhYrZyCvtNtL7Tiwss5tyg8yKX0DDurlt4zzRw6p6F3CsU--bXpfUrxeYW5mDFkh8NgJ4yrbLjshFSd0qqix_-hj3GVprqd4ar-vwWuZaX4hnIp5pzQm6cURpvWhoF5M202pk1VZv6ZNryGjt6rV8sR-8_Ih9oKiA2Q69X0gOnr7W9qXwGWD4bS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521270284</pqid></control><display><type>article</type><title>On the Transformation of Genetic Effect Size from Logit to Liability Scale</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>SpringerLink Journals</source><creator>Wu, Tian ; Sham, Pak Chung</creator><creatorcontrib>Wu, Tian ; Sham, Pak Chung</creatorcontrib><description>Genetic effects on the liability scale are informative for describing the genetic architecture of binary traits, typically diseases. However, most genetic association analyses on binary traits are performed by logistic regression, and there is no straightforward method that transforms both effect size estimate and standard error from the logit scale to the liability scale. Here, we derive a simple linear transformation of the log odds ratio and its standard error for a single nucleotide polymorphism (SNP) to an effect size and standard error on the liability scale. We show by analytic calculations and simulations that this approximation is accurate when the disease is common and the SNP effect is small. We also apply this method to estimate the contribution of a SNP near the
RET
gene to the variance of Hirschsprung disease liability, and the age-specific contributions of
APOE4
on the variance of Alzheimer’s disease liability. We discuss the approximate linear inter-relationships between genotype and effect sizes on the observed binary, logit, and liability scales, and the potential applications of the linear approximation to statistical power calculation for binary traits.</description><identifier>ISSN: 0001-8244</identifier><identifier>EISSN: 1573-3297</identifier><identifier>DOI: 10.1007/s10519-021-10042-2</identifier><identifier>PMID: 33630212</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Age ; Age differences ; Alzheimer's disease ; Approximation ; Behavioral Science and Psychology ; Clinical Psychology ; Gene polymorphism ; Genetic analysis ; Genetic transformation ; Genotypes ; Health Psychology ; Hirschsprung's disease ; Liability ; Neurodegenerative diseases ; Original Research ; Psychology ; Public Health ; Ret protein ; Single-nucleotide polymorphism ; Statistical power ; Transformation</subject><ispartof>Behavior genetics, 2021-05, Vol.51 (3), p.215-222</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-836c8fd0034010a85c50d987d38523f462ae3f04b4f1e9a5bff181cecc80dc5e3</citedby><cites>FETCH-LOGICAL-c375t-836c8fd0034010a85c50d987d38523f462ae3f04b4f1e9a5bff181cecc80dc5e3</cites><orcidid>0000-0002-0304-3992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10519-021-10042-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10519-021-10042-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,12825,27901,27902,30976,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33630212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Tian</creatorcontrib><creatorcontrib>Sham, Pak Chung</creatorcontrib><title>On the Transformation of Genetic Effect Size from Logit to Liability Scale</title><title>Behavior genetics</title><addtitle>Behav Genet</addtitle><addtitle>Behav Genet</addtitle><description>Genetic effects on the liability scale are informative for describing the genetic architecture of binary traits, typically diseases. However, most genetic association analyses on binary traits are performed by logistic regression, and there is no straightforward method that transforms both effect size estimate and standard error from the logit scale to the liability scale. Here, we derive a simple linear transformation of the log odds ratio and its standard error for a single nucleotide polymorphism (SNP) to an effect size and standard error on the liability scale. We show by analytic calculations and simulations that this approximation is accurate when the disease is common and the SNP effect is small. We also apply this method to estimate the contribution of a SNP near the
RET
gene to the variance of Hirschsprung disease liability, and the age-specific contributions of
APOE4
on the variance of Alzheimer’s disease liability. We discuss the approximate linear inter-relationships between genotype and effect sizes on the observed binary, logit, and liability scales, and the potential applications of the linear approximation to statistical power calculation for binary traits.</description><subject>Age</subject><subject>Age differences</subject><subject>Alzheimer's disease</subject><subject>Approximation</subject><subject>Behavioral Science and Psychology</subject><subject>Clinical Psychology</subject><subject>Gene polymorphism</subject><subject>Genetic analysis</subject><subject>Genetic transformation</subject><subject>Genotypes</subject><subject>Health Psychology</subject><subject>Hirschsprung's disease</subject><subject>Liability</subject><subject>Neurodegenerative diseases</subject><subject>Original Research</subject><subject>Psychology</subject><subject>Public Health</subject><subject>Ret protein</subject><subject>Single-nucleotide polymorphism</subject><subject>Statistical power</subject><subject>Transformation</subject><issn>0001-8244</issn><issn>1573-3297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtPJCEURslEo63jH3BhSNzMpvTy6qKWE-MznbjQWROaujiYqkKBXrS_Xpz2kczCFbnhfB-XQ8ghgxMG0J5mBop1DXDW1Fnyhv8gM6Za0QjetVtkBgCs0VzKXbKX82Md-VyqHbIrxFzUGJ-Rm9uJlr9I75Odso9ptCXEiUZPL3HCEhw99x5doXfhBalPcaSL-BAKLZEugl2GIZQ1vXN2wJ9k29sh48H7uU_-XJzfn101i9vL67Pfi8aJVpVGi7nTvgcQEhhYrZyCvtNtL7Tiwss5tyg8yKX0DDurlt4zzRw6p6F3CsU--bXpfUrxeYW5mDFkh8NgJ4yrbLjshFSd0qqix_-hj3GVprqd4ar-vwWuZaX4hnIp5pzQm6cURpvWhoF5M202pk1VZv6ZNryGjt6rV8sR-8_Ih9oKiA2Q69X0gOnr7W9qXwGWD4bS</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Wu, Tian</creator><creator>Sham, Pak Chung</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QG</scope><scope>7QJ</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>HEHIP</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2S</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0304-3992</orcidid></search><sort><creationdate>20210501</creationdate><title>On the Transformation of Genetic Effect Size from Logit to Liability Scale</title><author>Wu, Tian ; Sham, Pak Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-836c8fd0034010a85c50d987d38523f462ae3f04b4f1e9a5bff181cecc80dc5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Age differences</topic><topic>Alzheimer's disease</topic><topic>Approximation</topic><topic>Behavioral Science and Psychology</topic><topic>Clinical Psychology</topic><topic>Gene polymorphism</topic><topic>Genetic analysis</topic><topic>Genetic transformation</topic><topic>Genotypes</topic><topic>Health Psychology</topic><topic>Hirschsprung's disease</topic><topic>Liability</topic><topic>Neurodegenerative diseases</topic><topic>Original Research</topic><topic>Psychology</topic><topic>Public Health</topic><topic>Ret protein</topic><topic>Single-nucleotide polymorphism</topic><topic>Statistical power</topic><topic>Transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tian</creatorcontrib><creatorcontrib>Sham, Pak Chung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Sociology Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Sociology Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Behavior genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Tian</au><au>Sham, Pak Chung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Transformation of Genetic Effect Size from Logit to Liability Scale</atitle><jtitle>Behavior genetics</jtitle><stitle>Behav Genet</stitle><addtitle>Behav Genet</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>51</volume><issue>3</issue><spage>215</spage><epage>222</epage><pages>215-222</pages><issn>0001-8244</issn><eissn>1573-3297</eissn><abstract>Genetic effects on the liability scale are informative for describing the genetic architecture of binary traits, typically diseases. However, most genetic association analyses on binary traits are performed by logistic regression, and there is no straightforward method that transforms both effect size estimate and standard error from the logit scale to the liability scale. Here, we derive a simple linear transformation of the log odds ratio and its standard error for a single nucleotide polymorphism (SNP) to an effect size and standard error on the liability scale. We show by analytic calculations and simulations that this approximation is accurate when the disease is common and the SNP effect is small. We also apply this method to estimate the contribution of a SNP near the
RET
gene to the variance of Hirschsprung disease liability, and the age-specific contributions of
APOE4
on the variance of Alzheimer’s disease liability. We discuss the approximate linear inter-relationships between genotype and effect sizes on the observed binary, logit, and liability scales, and the potential applications of the linear approximation to statistical power calculation for binary traits.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33630212</pmid><doi>10.1007/s10519-021-10042-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0304-3992</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8244 |
ispartof | Behavior genetics, 2021-05, Vol.51 (3), p.215-222 |
issn | 0001-8244 1573-3297 |
language | eng |
recordid | cdi_proquest_miscellaneous_2493459585 |
source | Applied Social Sciences Index & Abstracts (ASSIA); SpringerLink Journals |
subjects | Age Age differences Alzheimer's disease Approximation Behavioral Science and Psychology Clinical Psychology Gene polymorphism Genetic analysis Genetic transformation Genotypes Health Psychology Hirschsprung's disease Liability Neurodegenerative diseases Original Research Psychology Public Health Ret protein Single-nucleotide polymorphism Statistical power Transformation |
title | On the Transformation of Genetic Effect Size from Logit to Liability Scale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Transformation%20of%20Genetic%20Effect%20Size%20from%20Logit%20to%20Liability%20Scale&rft.jtitle=Behavior%20genetics&rft.au=Wu,%20Tian&rft.date=2021-05-01&rft.volume=51&rft.issue=3&rft.spage=215&rft.epage=222&rft.pages=215-222&rft.issn=0001-8244&rft.eissn=1573-3297&rft_id=info:doi/10.1007/s10519-021-10042-2&rft_dat=%3Cproquest_cross%3E2493459585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521270284&rft_id=info:pmid/33630212&rfr_iscdi=true |