Nanoporous and Highly Thermal Conductive Thin Film of Single-Crystal Covalent Organic Frameworks Ribbons
Nanoporous materials are widely explored as efficient adsorbents for the storage of gases and liquids as well as for effective low-dielectric materials in large-scale integrated circuits. These applications require fast heat transfer, while most nanoporous substances are thermal insulators. Here, th...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2021-03, Vol.143 (10), p.3927-3933 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3933 |
---|---|
container_issue | 10 |
container_start_page | 3927 |
container_title | Journal of the American Chemical Society |
container_volume | 143 |
creator | Tan, Fanglin Han, Shuo Peng, Daoling Wang, Honglei Yang, Jing Zhao, Pei Ye, Xiaojun Dong, Xin Zheng, Yuanyuan Zheng, Nan Gong, Li Liang, Chaolun Frese, Natalie Gölzhäuser, Armin Qi, Haoyuan Chen, Shanshan Liu, Wei Zheng, Zhikun |
description | Nanoporous materials are widely explored as efficient adsorbents for the storage of gases and liquids as well as for effective low-dielectric materials in large-scale integrated circuits. These applications require fast heat transfer, while most nanoporous substances are thermal insulators. Here, the oriented growth of micrometer-sized single-crystal covalent organic frameworks (COFs) ribbons with nanoporous structures at an air–water interface is presented. The obtained COFs ribbons are interconnected into a continuous and purely crystalline thin film. Due to the robust connectivity among the COFs ribbons, the entire film can be easily transferred and reliably contacted with target supports. The measured thermal conductivity amounts to ∼5.31 ± 0.37 W m–1 K–1 at 305 K, which is so far the highest value for nanoporous materials. These findings provide a methodology to grow and assemble single-crystal COFs into large area ensembles for the exploration of functional properties and potentially lead to new devices with COFs thin films where both porosity and thermal conductivity are desired. |
doi_str_mv | 10.1021/jacs.0c13458 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2493455839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493455839</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-15a8d6320d2a41a6b09a835f6f0661a2ea2e38d29d9fb6d7687bb46db0d2b29a3</originalsourceid><addsrcrecordid>eNptkMtLxDAQh4Mouj5uniVHD1bzaLPpURZXBVHwcS6TJt3N2iZr0ir735vVVS9CYMjwzW-YD6FjSs4pYfRiAXU8JzXleSG30IgWjGQFZWIbjQghLBtLwffQfoyL9M2ZpLtoj3PBSlmQEZrfg_NLH_wQMTiNb-xs3q7w89yEDlo88U4PdW_fTWpZh6e27bBv8JN1s9Zkk7CK_Rf2Dq1xPX4IM3C2xtMAnfnw4TXiR6uUd_EQ7TTQRnO0qQfoZXr1PLnJ7h6ubyeXdxlwlvcZLUBqwRnRDHIKQpESJC8a0RAhKDCTHpealbpslNBjIcdK5UKrNKBYCfwAnX7nLoN_G0zsq87G2rQtOJOOrFheJlOF5GVCz77ROvgYg2mqZbAdhFVFSbV2W63dVhu3CT_ZJA-qM_oX_pH5t3o9tfBDcOnQ_7M-Ab7agu0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493455839</pqid></control><display><type>article</type><title>Nanoporous and Highly Thermal Conductive Thin Film of Single-Crystal Covalent Organic Frameworks Ribbons</title><source>ACS Publications</source><creator>Tan, Fanglin ; Han, Shuo ; Peng, Daoling ; Wang, Honglei ; Yang, Jing ; Zhao, Pei ; Ye, Xiaojun ; Dong, Xin ; Zheng, Yuanyuan ; Zheng, Nan ; Gong, Li ; Liang, Chaolun ; Frese, Natalie ; Gölzhäuser, Armin ; Qi, Haoyuan ; Chen, Shanshan ; Liu, Wei ; Zheng, Zhikun</creator><creatorcontrib>Tan, Fanglin ; Han, Shuo ; Peng, Daoling ; Wang, Honglei ; Yang, Jing ; Zhao, Pei ; Ye, Xiaojun ; Dong, Xin ; Zheng, Yuanyuan ; Zheng, Nan ; Gong, Li ; Liang, Chaolun ; Frese, Natalie ; Gölzhäuser, Armin ; Qi, Haoyuan ; Chen, Shanshan ; Liu, Wei ; Zheng, Zhikun</creatorcontrib><description>Nanoporous materials are widely explored as efficient adsorbents for the storage of gases and liquids as well as for effective low-dielectric materials in large-scale integrated circuits. These applications require fast heat transfer, while most nanoporous substances are thermal insulators. Here, the oriented growth of micrometer-sized single-crystal covalent organic frameworks (COFs) ribbons with nanoporous structures at an air–water interface is presented. The obtained COFs ribbons are interconnected into a continuous and purely crystalline thin film. Due to the robust connectivity among the COFs ribbons, the entire film can be easily transferred and reliably contacted with target supports. The measured thermal conductivity amounts to ∼5.31 ± 0.37 W m–1 K–1 at 305 K, which is so far the highest value for nanoporous materials. These findings provide a methodology to grow and assemble single-crystal COFs into large area ensembles for the exploration of functional properties and potentially lead to new devices with COFs thin films where both porosity and thermal conductivity are desired.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c13458</identifier><identifier>PMID: 33629850</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2021-03, Vol.143 (10), p.3927-3933</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-15a8d6320d2a41a6b09a835f6f0661a2ea2e38d29d9fb6d7687bb46db0d2b29a3</citedby><cites>FETCH-LOGICAL-a324t-15a8d6320d2a41a6b09a835f6f0661a2ea2e38d29d9fb6d7687bb46db0d2b29a3</cites><orcidid>0000-0002-9591-0319 ; 0000-0001-6127-7044 ; 0000-0001-9348-6967 ; 0000-0002-1259-7401 ; 0000-0002-0838-9028 ; 0000-0002-3155-8571 ; 0000-0002-6684-7074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c13458$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c13458$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33629850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Fanglin</creatorcontrib><creatorcontrib>Han, Shuo</creatorcontrib><creatorcontrib>Peng, Daoling</creatorcontrib><creatorcontrib>Wang, Honglei</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Zhao, Pei</creatorcontrib><creatorcontrib>Ye, Xiaojun</creatorcontrib><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Zheng, Yuanyuan</creatorcontrib><creatorcontrib>Zheng, Nan</creatorcontrib><creatorcontrib>Gong, Li</creatorcontrib><creatorcontrib>Liang, Chaolun</creatorcontrib><creatorcontrib>Frese, Natalie</creatorcontrib><creatorcontrib>Gölzhäuser, Armin</creatorcontrib><creatorcontrib>Qi, Haoyuan</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Zheng, Zhikun</creatorcontrib><title>Nanoporous and Highly Thermal Conductive Thin Film of Single-Crystal Covalent Organic Frameworks Ribbons</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Nanoporous materials are widely explored as efficient adsorbents for the storage of gases and liquids as well as for effective low-dielectric materials in large-scale integrated circuits. These applications require fast heat transfer, while most nanoporous substances are thermal insulators. Here, the oriented growth of micrometer-sized single-crystal covalent organic frameworks (COFs) ribbons with nanoporous structures at an air–water interface is presented. The obtained COFs ribbons are interconnected into a continuous and purely crystalline thin film. Due to the robust connectivity among the COFs ribbons, the entire film can be easily transferred and reliably contacted with target supports. The measured thermal conductivity amounts to ∼5.31 ± 0.37 W m–1 K–1 at 305 K, which is so far the highest value for nanoporous materials. These findings provide a methodology to grow and assemble single-crystal COFs into large area ensembles for the exploration of functional properties and potentially lead to new devices with COFs thin films where both porosity and thermal conductivity are desired.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkMtLxDAQh4Mouj5uniVHD1bzaLPpURZXBVHwcS6TJt3N2iZr0ir735vVVS9CYMjwzW-YD6FjSs4pYfRiAXU8JzXleSG30IgWjGQFZWIbjQghLBtLwffQfoyL9M2ZpLtoj3PBSlmQEZrfg_NLH_wQMTiNb-xs3q7w89yEDlo88U4PdW_fTWpZh6e27bBv8JN1s9Zkk7CK_Rf2Dq1xPX4IM3C2xtMAnfnw4TXiR6uUd_EQ7TTQRnO0qQfoZXr1PLnJ7h6ubyeXdxlwlvcZLUBqwRnRDHIKQpESJC8a0RAhKDCTHpealbpslNBjIcdK5UKrNKBYCfwAnX7nLoN_G0zsq87G2rQtOJOOrFheJlOF5GVCz77ROvgYg2mqZbAdhFVFSbV2W63dVhu3CT_ZJA-qM_oX_pH5t3o9tfBDcOnQ_7M-Ab7agu0</recordid><startdate>20210317</startdate><enddate>20210317</enddate><creator>Tan, Fanglin</creator><creator>Han, Shuo</creator><creator>Peng, Daoling</creator><creator>Wang, Honglei</creator><creator>Yang, Jing</creator><creator>Zhao, Pei</creator><creator>Ye, Xiaojun</creator><creator>Dong, Xin</creator><creator>Zheng, Yuanyuan</creator><creator>Zheng, Nan</creator><creator>Gong, Li</creator><creator>Liang, Chaolun</creator><creator>Frese, Natalie</creator><creator>Gölzhäuser, Armin</creator><creator>Qi, Haoyuan</creator><creator>Chen, Shanshan</creator><creator>Liu, Wei</creator><creator>Zheng, Zhikun</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9591-0319</orcidid><orcidid>https://orcid.org/0000-0001-6127-7044</orcidid><orcidid>https://orcid.org/0000-0001-9348-6967</orcidid><orcidid>https://orcid.org/0000-0002-1259-7401</orcidid><orcidid>https://orcid.org/0000-0002-0838-9028</orcidid><orcidid>https://orcid.org/0000-0002-3155-8571</orcidid><orcidid>https://orcid.org/0000-0002-6684-7074</orcidid></search><sort><creationdate>20210317</creationdate><title>Nanoporous and Highly Thermal Conductive Thin Film of Single-Crystal Covalent Organic Frameworks Ribbons</title><author>Tan, Fanglin ; Han, Shuo ; Peng, Daoling ; Wang, Honglei ; Yang, Jing ; Zhao, Pei ; Ye, Xiaojun ; Dong, Xin ; Zheng, Yuanyuan ; Zheng, Nan ; Gong, Li ; Liang, Chaolun ; Frese, Natalie ; Gölzhäuser, Armin ; Qi, Haoyuan ; Chen, Shanshan ; Liu, Wei ; Zheng, Zhikun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-15a8d6320d2a41a6b09a835f6f0661a2ea2e38d29d9fb6d7687bb46db0d2b29a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Fanglin</creatorcontrib><creatorcontrib>Han, Shuo</creatorcontrib><creatorcontrib>Peng, Daoling</creatorcontrib><creatorcontrib>Wang, Honglei</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Zhao, Pei</creatorcontrib><creatorcontrib>Ye, Xiaojun</creatorcontrib><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Zheng, Yuanyuan</creatorcontrib><creatorcontrib>Zheng, Nan</creatorcontrib><creatorcontrib>Gong, Li</creatorcontrib><creatorcontrib>Liang, Chaolun</creatorcontrib><creatorcontrib>Frese, Natalie</creatorcontrib><creatorcontrib>Gölzhäuser, Armin</creatorcontrib><creatorcontrib>Qi, Haoyuan</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Zheng, Zhikun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Fanglin</au><au>Han, Shuo</au><au>Peng, Daoling</au><au>Wang, Honglei</au><au>Yang, Jing</au><au>Zhao, Pei</au><au>Ye, Xiaojun</au><au>Dong, Xin</au><au>Zheng, Yuanyuan</au><au>Zheng, Nan</au><au>Gong, Li</au><au>Liang, Chaolun</au><au>Frese, Natalie</au><au>Gölzhäuser, Armin</au><au>Qi, Haoyuan</au><au>Chen, Shanshan</au><au>Liu, Wei</au><au>Zheng, Zhikun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoporous and Highly Thermal Conductive Thin Film of Single-Crystal Covalent Organic Frameworks Ribbons</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-03-17</date><risdate>2021</risdate><volume>143</volume><issue>10</issue><spage>3927</spage><epage>3933</epage><pages>3927-3933</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Nanoporous materials are widely explored as efficient adsorbents for the storage of gases and liquids as well as for effective low-dielectric materials in large-scale integrated circuits. These applications require fast heat transfer, while most nanoporous substances are thermal insulators. Here, the oriented growth of micrometer-sized single-crystal covalent organic frameworks (COFs) ribbons with nanoporous structures at an air–water interface is presented. The obtained COFs ribbons are interconnected into a continuous and purely crystalline thin film. Due to the robust connectivity among the COFs ribbons, the entire film can be easily transferred and reliably contacted with target supports. The measured thermal conductivity amounts to ∼5.31 ± 0.37 W m–1 K–1 at 305 K, which is so far the highest value for nanoporous materials. These findings provide a methodology to grow and assemble single-crystal COFs into large area ensembles for the exploration of functional properties and potentially lead to new devices with COFs thin films where both porosity and thermal conductivity are desired.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33629850</pmid><doi>10.1021/jacs.0c13458</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9591-0319</orcidid><orcidid>https://orcid.org/0000-0001-6127-7044</orcidid><orcidid>https://orcid.org/0000-0001-9348-6967</orcidid><orcidid>https://orcid.org/0000-0002-1259-7401</orcidid><orcidid>https://orcid.org/0000-0002-0838-9028</orcidid><orcidid>https://orcid.org/0000-0002-3155-8571</orcidid><orcidid>https://orcid.org/0000-0002-6684-7074</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2021-03, Vol.143 (10), p.3927-3933 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_2493455839 |
source | ACS Publications |
title | Nanoporous and Highly Thermal Conductive Thin Film of Single-Crystal Covalent Organic Frameworks Ribbons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoporous%20and%20Highly%20Thermal%20Conductive%20Thin%20Film%20of%20Single-Crystal%20Covalent%20Organic%20Frameworks%20Ribbons&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Tan,%20Fanglin&rft.date=2021-03-17&rft.volume=143&rft.issue=10&rft.spage=3927&rft.epage=3933&rft.pages=3927-3933&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c13458&rft_dat=%3Cproquest_cross%3E2493455839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493455839&rft_id=info:pmid/33629850&rfr_iscdi=true |