Accelerated in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts
An ideal decellularized allogenic or xenogeneic cardiovascular graft should be capable of preventing thrombus formation after implantation. The antithrombogenicity of the graft is ensured by a confluent endothelial cell layer formed on its surface. Later repopulation and remodeling of the scaffold b...
Gespeichert in:
Veröffentlicht in: | Biomedical materials (Bristol) 2021-03, Vol.16 (2), p.025024-025024 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 025024 |
---|---|
container_issue | 2 |
container_start_page | 025024 |
container_title | Biomedical materials (Bristol) |
container_volume | 16 |
creator | Filova, Elena Steinerova, Marie Travnickova, Martina Knitlova, Jarmila Musilkova, Jana Eckhardt, Adam Hadraba, Daniel Matejka, Roman Prazak, Simon Stepanovska, Jana Kucerova, Johanka Riedel, Tomáš Brynda, Eduard Lodererova, Alena Honsova, Eva Pirk, Jan Konarik, Miroslav Bacakova, Lucie |
description | An ideal decellularized allogenic or xenogeneic cardiovascular graft should be capable of preventing thrombus formation after implantation. The antithrombogenicity of the graft is ensured by a confluent endothelial cell layer formed on its surface. Later repopulation and remodeling of the scaffold by the patient's cells should result in the formation of living autologous tissue. In the work presented here, decellularized porcine pericardium scaffolds were modified by growing a fibrin mesh on the surface and inside the scaffolds, and by attaching heparin and human vascular endothelial growth factor (VEGF) to this mesh. Then the scaffolds were seeded with human adipose tissue-derived stem cells (ASCs). While the ASCs grew only on the surface of the decellularized pericardium, the fibrin-modified scaffolds were entirely repopulated in 28 d, and the scaffolds modified with fibrin, heparin and VEGF were already repopulated within 6 d. Label free mass spectrometry revealed fibronectin, collagens, and other extracellular matrix proteins produced by ASCs during recellularization. Thin layers of human umbilical endothelial cells were formed within 4 d after the cells were seeded on the surfaces of the scaffold, which had previously been seeded with ASCs. The results indicate that an artificial tissue prepared by in vitro recellularization and remodeling of decellularized non-autologous pericardium with autologous ASCs seems to be a promising candidate for cardiovascular grafts capable of accelerating in situ endothelialization. ASCs resemble the valve interstitial cells present in heart valves. An advantage of this approach is that ASCs can easily be collected from the patient by liposuction. |
doi_str_mv | 10.1088/1748-605X/abbdbd |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2493449325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493449325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-955358e0befb7d9769fa9d486fff70f911871141d72ec052514e4a290939a0aa3</originalsourceid><addsrcrecordid>eNpNkM1LxDAQxYMo7rp69yQ5eqmbNEnbHJfFLxC8KHgL03xIpG3WpF3Qv97WXRcPwzwebx7DD6FLSm4oqaolLXmVFUS8LaGuTW2O0PxgHR80pzN0ltIHIUIKJk_RjLEil0Uh5sittLaNjdBbg32Ht76PAUc7ms3QQPTf0PvQ4eCw-WeO4U2I2ncWb2z0GqLxQ4tdiPhXhy0kPUXxewTXp3N04qBJ9mK_F-j17vZl_ZA9Pd8_rldPmR5f6jMpBBOVJbV1dWlkWUgH0vCqcM6VxElKq5JSTk2ZW01ELii3HHJJJJNAANgCXe96NzF8Djb1qvVpehs6G4akci4ZHycXY5TsojqGlKJ1ahN9C_FLUaImumrCpyaUakd3PLnatw91a83h4A8n-wFYhHku</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493449325</pqid></control><display><type>article</type><title>Accelerated in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts</title><source>MEDLINE</source><source>Institute of Physics Journals</source><creator>Filova, Elena ; Steinerova, Marie ; Travnickova, Martina ; Knitlova, Jarmila ; Musilkova, Jana ; Eckhardt, Adam ; Hadraba, Daniel ; Matejka, Roman ; Prazak, Simon ; Stepanovska, Jana ; Kucerova, Johanka ; Riedel, Tomáš ; Brynda, Eduard ; Lodererova, Alena ; Honsova, Eva ; Pirk, Jan ; Konarik, Miroslav ; Bacakova, Lucie</creator><creatorcontrib>Filova, Elena ; Steinerova, Marie ; Travnickova, Martina ; Knitlova, Jarmila ; Musilkova, Jana ; Eckhardt, Adam ; Hadraba, Daniel ; Matejka, Roman ; Prazak, Simon ; Stepanovska, Jana ; Kucerova, Johanka ; Riedel, Tomáš ; Brynda, Eduard ; Lodererova, Alena ; Honsova, Eva ; Pirk, Jan ; Konarik, Miroslav ; Bacakova, Lucie</creatorcontrib><description>An ideal decellularized allogenic or xenogeneic cardiovascular graft should be capable of preventing thrombus formation after implantation. The antithrombogenicity of the graft is ensured by a confluent endothelial cell layer formed on its surface. Later repopulation and remodeling of the scaffold by the patient's cells should result in the formation of living autologous tissue. In the work presented here, decellularized porcine pericardium scaffolds were modified by growing a fibrin mesh on the surface and inside the scaffolds, and by attaching heparin and human vascular endothelial growth factor (VEGF) to this mesh. Then the scaffolds were seeded with human adipose tissue-derived stem cells (ASCs). While the ASCs grew only on the surface of the decellularized pericardium, the fibrin-modified scaffolds were entirely repopulated in 28 d, and the scaffolds modified with fibrin, heparin and VEGF were already repopulated within 6 d. Label free mass spectrometry revealed fibronectin, collagens, and other extracellular matrix proteins produced by ASCs during recellularization. Thin layers of human umbilical endothelial cells were formed within 4 d after the cells were seeded on the surfaces of the scaffold, which had previously been seeded with ASCs. The results indicate that an artificial tissue prepared by in vitro recellularization and remodeling of decellularized non-autologous pericardium with autologous ASCs seems to be a promising candidate for cardiovascular grafts capable of accelerating in situ endothelialization. ASCs resemble the valve interstitial cells present in heart valves. An advantage of this approach is that ASCs can easily be collected from the patient by liposuction.</description><identifier>ISSN: 1748-6041</identifier><identifier>EISSN: 1748-605X</identifier><identifier>DOI: 10.1088/1748-605X/abbdbd</identifier><identifier>PMID: 33629665</identifier><language>eng</language><publisher>England</publisher><subject>Adipose Tissue - cytology ; Animals ; Bioprosthesis ; Cell Proliferation ; Collagen - chemistry ; Decellularized Extracellular Matrix - chemistry ; Endothelial Cells - cytology ; Extracellular Matrix - metabolism ; Fibrinogen - chemistry ; Fibronectins - chemistry ; Heart Valves ; Human Umbilical Vein Endothelial Cells ; Humans ; In Vitro Techniques ; Lipectomy ; Microscopy, Fluorescence ; Pericardium - metabolism ; Pericardium - pathology ; Stem Cells ; Swine ; Thrombin - chemistry ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Vascular Endothelial Growth Factor A - metabolism</subject><ispartof>Biomedical materials (Bristol), 2021-03, Vol.16 (2), p.025024-025024</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-955358e0befb7d9769fa9d486fff70f911871141d72ec052514e4a290939a0aa3</citedby><cites>FETCH-LOGICAL-c336t-955358e0befb7d9769fa9d486fff70f911871141d72ec052514e4a290939a0aa3</cites><orcidid>0000-0001-6215-197X ; 0000-0001-8745-1258 ; 0000-0002-6348-3607 ; 0000-0003-4607-4497 ; 0000-0001-9596-3069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33629665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Filova, Elena</creatorcontrib><creatorcontrib>Steinerova, Marie</creatorcontrib><creatorcontrib>Travnickova, Martina</creatorcontrib><creatorcontrib>Knitlova, Jarmila</creatorcontrib><creatorcontrib>Musilkova, Jana</creatorcontrib><creatorcontrib>Eckhardt, Adam</creatorcontrib><creatorcontrib>Hadraba, Daniel</creatorcontrib><creatorcontrib>Matejka, Roman</creatorcontrib><creatorcontrib>Prazak, Simon</creatorcontrib><creatorcontrib>Stepanovska, Jana</creatorcontrib><creatorcontrib>Kucerova, Johanka</creatorcontrib><creatorcontrib>Riedel, Tomáš</creatorcontrib><creatorcontrib>Brynda, Eduard</creatorcontrib><creatorcontrib>Lodererova, Alena</creatorcontrib><creatorcontrib>Honsova, Eva</creatorcontrib><creatorcontrib>Pirk, Jan</creatorcontrib><creatorcontrib>Konarik, Miroslav</creatorcontrib><creatorcontrib>Bacakova, Lucie</creatorcontrib><title>Accelerated in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts</title><title>Biomedical materials (Bristol)</title><addtitle>Biomed Mater</addtitle><description>An ideal decellularized allogenic or xenogeneic cardiovascular graft should be capable of preventing thrombus formation after implantation. The antithrombogenicity of the graft is ensured by a confluent endothelial cell layer formed on its surface. Later repopulation and remodeling of the scaffold by the patient's cells should result in the formation of living autologous tissue. In the work presented here, decellularized porcine pericardium scaffolds were modified by growing a fibrin mesh on the surface and inside the scaffolds, and by attaching heparin and human vascular endothelial growth factor (VEGF) to this mesh. Then the scaffolds were seeded with human adipose tissue-derived stem cells (ASCs). While the ASCs grew only on the surface of the decellularized pericardium, the fibrin-modified scaffolds were entirely repopulated in 28 d, and the scaffolds modified with fibrin, heparin and VEGF were already repopulated within 6 d. Label free mass spectrometry revealed fibronectin, collagens, and other extracellular matrix proteins produced by ASCs during recellularization. Thin layers of human umbilical endothelial cells were formed within 4 d after the cells were seeded on the surfaces of the scaffold, which had previously been seeded with ASCs. The results indicate that an artificial tissue prepared by in vitro recellularization and remodeling of decellularized non-autologous pericardium with autologous ASCs seems to be a promising candidate for cardiovascular grafts capable of accelerating in situ endothelialization. ASCs resemble the valve interstitial cells present in heart valves. An advantage of this approach is that ASCs can easily be collected from the patient by liposuction.</description><subject>Adipose Tissue - cytology</subject><subject>Animals</subject><subject>Bioprosthesis</subject><subject>Cell Proliferation</subject><subject>Collagen - chemistry</subject><subject>Decellularized Extracellular Matrix - chemistry</subject><subject>Endothelial Cells - cytology</subject><subject>Extracellular Matrix - metabolism</subject><subject>Fibrinogen - chemistry</subject><subject>Fibronectins - chemistry</subject><subject>Heart Valves</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Lipectomy</subject><subject>Microscopy, Fluorescence</subject><subject>Pericardium - metabolism</subject><subject>Pericardium - pathology</subject><subject>Stem Cells</subject><subject>Swine</subject><subject>Thrombin - chemistry</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><issn>1748-6041</issn><issn>1748-605X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkM1LxDAQxYMo7rp69yQ5eqmbNEnbHJfFLxC8KHgL03xIpG3WpF3Qv97WXRcPwzwebx7DD6FLSm4oqaolLXmVFUS8LaGuTW2O0PxgHR80pzN0ltIHIUIKJk_RjLEil0Uh5sittLaNjdBbg32Ht76PAUc7ms3QQPTf0PvQ4eCw-WeO4U2I2ncWb2z0GqLxQ4tdiPhXhy0kPUXxewTXp3N04qBJ9mK_F-j17vZl_ZA9Pd8_rldPmR5f6jMpBBOVJbV1dWlkWUgH0vCqcM6VxElKq5JSTk2ZW01ELii3HHJJJJNAANgCXe96NzF8Djb1qvVpehs6G4akci4ZHycXY5TsojqGlKJ1ahN9C_FLUaImumrCpyaUakd3PLnatw91a83h4A8n-wFYhHku</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Filova, Elena</creator><creator>Steinerova, Marie</creator><creator>Travnickova, Martina</creator><creator>Knitlova, Jarmila</creator><creator>Musilkova, Jana</creator><creator>Eckhardt, Adam</creator><creator>Hadraba, Daniel</creator><creator>Matejka, Roman</creator><creator>Prazak, Simon</creator><creator>Stepanovska, Jana</creator><creator>Kucerova, Johanka</creator><creator>Riedel, Tomáš</creator><creator>Brynda, Eduard</creator><creator>Lodererova, Alena</creator><creator>Honsova, Eva</creator><creator>Pirk, Jan</creator><creator>Konarik, Miroslav</creator><creator>Bacakova, Lucie</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6215-197X</orcidid><orcidid>https://orcid.org/0000-0001-8745-1258</orcidid><orcidid>https://orcid.org/0000-0002-6348-3607</orcidid><orcidid>https://orcid.org/0000-0003-4607-4497</orcidid><orcidid>https://orcid.org/0000-0001-9596-3069</orcidid></search><sort><creationdate>20210301</creationdate><title>Accelerated in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts</title><author>Filova, Elena ; Steinerova, Marie ; Travnickova, Martina ; Knitlova, Jarmila ; Musilkova, Jana ; Eckhardt, Adam ; Hadraba, Daniel ; Matejka, Roman ; Prazak, Simon ; Stepanovska, Jana ; Kucerova, Johanka ; Riedel, Tomáš ; Brynda, Eduard ; Lodererova, Alena ; Honsova, Eva ; Pirk, Jan ; Konarik, Miroslav ; Bacakova, Lucie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-955358e0befb7d9769fa9d486fff70f911871141d72ec052514e4a290939a0aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adipose Tissue - cytology</topic><topic>Animals</topic><topic>Bioprosthesis</topic><topic>Cell Proliferation</topic><topic>Collagen - chemistry</topic><topic>Decellularized Extracellular Matrix - chemistry</topic><topic>Endothelial Cells - cytology</topic><topic>Extracellular Matrix - metabolism</topic><topic>Fibrinogen - chemistry</topic><topic>Fibronectins - chemistry</topic><topic>Heart Valves</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Lipectomy</topic><topic>Microscopy, Fluorescence</topic><topic>Pericardium - metabolism</topic><topic>Pericardium - pathology</topic><topic>Stem Cells</topic><topic>Swine</topic><topic>Thrombin - chemistry</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filova, Elena</creatorcontrib><creatorcontrib>Steinerova, Marie</creatorcontrib><creatorcontrib>Travnickova, Martina</creatorcontrib><creatorcontrib>Knitlova, Jarmila</creatorcontrib><creatorcontrib>Musilkova, Jana</creatorcontrib><creatorcontrib>Eckhardt, Adam</creatorcontrib><creatorcontrib>Hadraba, Daniel</creatorcontrib><creatorcontrib>Matejka, Roman</creatorcontrib><creatorcontrib>Prazak, Simon</creatorcontrib><creatorcontrib>Stepanovska, Jana</creatorcontrib><creatorcontrib>Kucerova, Johanka</creatorcontrib><creatorcontrib>Riedel, Tomáš</creatorcontrib><creatorcontrib>Brynda, Eduard</creatorcontrib><creatorcontrib>Lodererova, Alena</creatorcontrib><creatorcontrib>Honsova, Eva</creatorcontrib><creatorcontrib>Pirk, Jan</creatorcontrib><creatorcontrib>Konarik, Miroslav</creatorcontrib><creatorcontrib>Bacakova, Lucie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical materials (Bristol)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filova, Elena</au><au>Steinerova, Marie</au><au>Travnickova, Martina</au><au>Knitlova, Jarmila</au><au>Musilkova, Jana</au><au>Eckhardt, Adam</au><au>Hadraba, Daniel</au><au>Matejka, Roman</au><au>Prazak, Simon</au><au>Stepanovska, Jana</au><au>Kucerova, Johanka</au><au>Riedel, Tomáš</au><au>Brynda, Eduard</au><au>Lodererova, Alena</au><au>Honsova, Eva</au><au>Pirk, Jan</au><au>Konarik, Miroslav</au><au>Bacakova, Lucie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts</atitle><jtitle>Biomedical materials (Bristol)</jtitle><addtitle>Biomed Mater</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>16</volume><issue>2</issue><spage>025024</spage><epage>025024</epage><pages>025024-025024</pages><issn>1748-6041</issn><eissn>1748-605X</eissn><abstract>An ideal decellularized allogenic or xenogeneic cardiovascular graft should be capable of preventing thrombus formation after implantation. The antithrombogenicity of the graft is ensured by a confluent endothelial cell layer formed on its surface. Later repopulation and remodeling of the scaffold by the patient's cells should result in the formation of living autologous tissue. In the work presented here, decellularized porcine pericardium scaffolds were modified by growing a fibrin mesh on the surface and inside the scaffolds, and by attaching heparin and human vascular endothelial growth factor (VEGF) to this mesh. Then the scaffolds were seeded with human adipose tissue-derived stem cells (ASCs). While the ASCs grew only on the surface of the decellularized pericardium, the fibrin-modified scaffolds were entirely repopulated in 28 d, and the scaffolds modified with fibrin, heparin and VEGF were already repopulated within 6 d. Label free mass spectrometry revealed fibronectin, collagens, and other extracellular matrix proteins produced by ASCs during recellularization. Thin layers of human umbilical endothelial cells were formed within 4 d after the cells were seeded on the surfaces of the scaffold, which had previously been seeded with ASCs. The results indicate that an artificial tissue prepared by in vitro recellularization and remodeling of decellularized non-autologous pericardium with autologous ASCs seems to be a promising candidate for cardiovascular grafts capable of accelerating in situ endothelialization. ASCs resemble the valve interstitial cells present in heart valves. An advantage of this approach is that ASCs can easily be collected from the patient by liposuction.</abstract><cop>England</cop><pmid>33629665</pmid><doi>10.1088/1748-605X/abbdbd</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6215-197X</orcidid><orcidid>https://orcid.org/0000-0001-8745-1258</orcidid><orcidid>https://orcid.org/0000-0002-6348-3607</orcidid><orcidid>https://orcid.org/0000-0003-4607-4497</orcidid><orcidid>https://orcid.org/0000-0001-9596-3069</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-6041 |
ispartof | Biomedical materials (Bristol), 2021-03, Vol.16 (2), p.025024-025024 |
issn | 1748-6041 1748-605X |
language | eng |
recordid | cdi_proquest_miscellaneous_2493449325 |
source | MEDLINE; Institute of Physics Journals |
subjects | Adipose Tissue - cytology Animals Bioprosthesis Cell Proliferation Collagen - chemistry Decellularized Extracellular Matrix - chemistry Endothelial Cells - cytology Extracellular Matrix - metabolism Fibrinogen - chemistry Fibronectins - chemistry Heart Valves Human Umbilical Vein Endothelial Cells Humans In Vitro Techniques Lipectomy Microscopy, Fluorescence Pericardium - metabolism Pericardium - pathology Stem Cells Swine Thrombin - chemistry Tissue Engineering - methods Tissue Scaffolds - chemistry Vascular Endothelial Growth Factor A - metabolism |
title | Accelerated in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20in%20vitro%20recellularization%20of%20decellularized%20porcine%20pericardium%20for%20cardiovascular%20grafts&rft.jtitle=Biomedical%20materials%20(Bristol)&rft.au=Filova,%20Elena&rft.date=2021-03-01&rft.volume=16&rft.issue=2&rft.spage=025024&rft.epage=025024&rft.pages=025024-025024&rft.issn=1748-6041&rft.eissn=1748-605X&rft_id=info:doi/10.1088/1748-605X/abbdbd&rft_dat=%3Cproquest_cross%3E2493449325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493449325&rft_id=info:pmid/33629665&rfr_iscdi=true |