Accelerated in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts

An ideal decellularized allogenic or xenogeneic cardiovascular graft should be capable of preventing thrombus formation after implantation. The antithrombogenicity of the graft is ensured by a confluent endothelial cell layer formed on its surface. Later repopulation and remodeling of the scaffold b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical materials (Bristol) 2021-03, Vol.16 (2), p.025024-025024
Hauptverfasser: Filova, Elena, Steinerova, Marie, Travnickova, Martina, Knitlova, Jarmila, Musilkova, Jana, Eckhardt, Adam, Hadraba, Daniel, Matejka, Roman, Prazak, Simon, Stepanovska, Jana, Kucerova, Johanka, Riedel, Tomáš, Brynda, Eduard, Lodererova, Alena, Honsova, Eva, Pirk, Jan, Konarik, Miroslav, Bacakova, Lucie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 025024
container_issue 2
container_start_page 025024
container_title Biomedical materials (Bristol)
container_volume 16
creator Filova, Elena
Steinerova, Marie
Travnickova, Martina
Knitlova, Jarmila
Musilkova, Jana
Eckhardt, Adam
Hadraba, Daniel
Matejka, Roman
Prazak, Simon
Stepanovska, Jana
Kucerova, Johanka
Riedel, Tomáš
Brynda, Eduard
Lodererova, Alena
Honsova, Eva
Pirk, Jan
Konarik, Miroslav
Bacakova, Lucie
description An ideal decellularized allogenic or xenogeneic cardiovascular graft should be capable of preventing thrombus formation after implantation. The antithrombogenicity of the graft is ensured by a confluent endothelial cell layer formed on its surface. Later repopulation and remodeling of the scaffold by the patient's cells should result in the formation of living autologous tissue. In the work presented here, decellularized porcine pericardium scaffolds were modified by growing a fibrin mesh on the surface and inside the scaffolds, and by attaching heparin and human vascular endothelial growth factor (VEGF) to this mesh. Then the scaffolds were seeded with human adipose tissue-derived stem cells (ASCs). While the ASCs grew only on the surface of the decellularized pericardium, the fibrin-modified scaffolds were entirely repopulated in 28 d, and the scaffolds modified with fibrin, heparin and VEGF were already repopulated within 6 d. Label free mass spectrometry revealed fibronectin, collagens, and other extracellular matrix proteins produced by ASCs during recellularization. Thin layers of human umbilical endothelial cells were formed within 4 d after the cells were seeded on the surfaces of the scaffold, which had previously been seeded with ASCs. The results indicate that an artificial tissue prepared by in vitro recellularization and remodeling of decellularized non-autologous pericardium with autologous ASCs seems to be a promising candidate for cardiovascular grafts capable of accelerating in situ endothelialization. ASCs resemble the valve interstitial cells present in heart valves. An advantage of this approach is that ASCs can easily be collected from the patient by liposuction.
doi_str_mv 10.1088/1748-605X/abbdbd
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2493449325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493449325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-955358e0befb7d9769fa9d486fff70f911871141d72ec052514e4a290939a0aa3</originalsourceid><addsrcrecordid>eNpNkM1LxDAQxYMo7rp69yQ5eqmbNEnbHJfFLxC8KHgL03xIpG3WpF3Qv97WXRcPwzwebx7DD6FLSm4oqaolLXmVFUS8LaGuTW2O0PxgHR80pzN0ltIHIUIKJk_RjLEil0Uh5sittLaNjdBbg32Ht76PAUc7ms3QQPTf0PvQ4eCw-WeO4U2I2ncWb2z0GqLxQ4tdiPhXhy0kPUXxewTXp3N04qBJ9mK_F-j17vZl_ZA9Pd8_rldPmR5f6jMpBBOVJbV1dWlkWUgH0vCqcM6VxElKq5JSTk2ZW01ELii3HHJJJJNAANgCXe96NzF8Djb1qvVpehs6G4akci4ZHycXY5TsojqGlKJ1ahN9C_FLUaImumrCpyaUakd3PLnatw91a83h4A8n-wFYhHku</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493449325</pqid></control><display><type>article</type><title>Accelerated in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts</title><source>MEDLINE</source><source>Institute of Physics Journals</source><creator>Filova, Elena ; Steinerova, Marie ; Travnickova, Martina ; Knitlova, Jarmila ; Musilkova, Jana ; Eckhardt, Adam ; Hadraba, Daniel ; Matejka, Roman ; Prazak, Simon ; Stepanovska, Jana ; Kucerova, Johanka ; Riedel, Tomáš ; Brynda, Eduard ; Lodererova, Alena ; Honsova, Eva ; Pirk, Jan ; Konarik, Miroslav ; Bacakova, Lucie</creator><creatorcontrib>Filova, Elena ; Steinerova, Marie ; Travnickova, Martina ; Knitlova, Jarmila ; Musilkova, Jana ; Eckhardt, Adam ; Hadraba, Daniel ; Matejka, Roman ; Prazak, Simon ; Stepanovska, Jana ; Kucerova, Johanka ; Riedel, Tomáš ; Brynda, Eduard ; Lodererova, Alena ; Honsova, Eva ; Pirk, Jan ; Konarik, Miroslav ; Bacakova, Lucie</creatorcontrib><description>An ideal decellularized allogenic or xenogeneic cardiovascular graft should be capable of preventing thrombus formation after implantation. The antithrombogenicity of the graft is ensured by a confluent endothelial cell layer formed on its surface. Later repopulation and remodeling of the scaffold by the patient's cells should result in the formation of living autologous tissue. In the work presented here, decellularized porcine pericardium scaffolds were modified by growing a fibrin mesh on the surface and inside the scaffolds, and by attaching heparin and human vascular endothelial growth factor (VEGF) to this mesh. Then the scaffolds were seeded with human adipose tissue-derived stem cells (ASCs). While the ASCs grew only on the surface of the decellularized pericardium, the fibrin-modified scaffolds were entirely repopulated in 28 d, and the scaffolds modified with fibrin, heparin and VEGF were already repopulated within 6 d. Label free mass spectrometry revealed fibronectin, collagens, and other extracellular matrix proteins produced by ASCs during recellularization. Thin layers of human umbilical endothelial cells were formed within 4 d after the cells were seeded on the surfaces of the scaffold, which had previously been seeded with ASCs. The results indicate that an artificial tissue prepared by in vitro recellularization and remodeling of decellularized non-autologous pericardium with autologous ASCs seems to be a promising candidate for cardiovascular grafts capable of accelerating in situ endothelialization. ASCs resemble the valve interstitial cells present in heart valves. An advantage of this approach is that ASCs can easily be collected from the patient by liposuction.</description><identifier>ISSN: 1748-6041</identifier><identifier>EISSN: 1748-605X</identifier><identifier>DOI: 10.1088/1748-605X/abbdbd</identifier><identifier>PMID: 33629665</identifier><language>eng</language><publisher>England</publisher><subject>Adipose Tissue - cytology ; Animals ; Bioprosthesis ; Cell Proliferation ; Collagen - chemistry ; Decellularized Extracellular Matrix - chemistry ; Endothelial Cells - cytology ; Extracellular Matrix - metabolism ; Fibrinogen - chemistry ; Fibronectins - chemistry ; Heart Valves ; Human Umbilical Vein Endothelial Cells ; Humans ; In Vitro Techniques ; Lipectomy ; Microscopy, Fluorescence ; Pericardium - metabolism ; Pericardium - pathology ; Stem Cells ; Swine ; Thrombin - chemistry ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Vascular Endothelial Growth Factor A - metabolism</subject><ispartof>Biomedical materials (Bristol), 2021-03, Vol.16 (2), p.025024-025024</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-955358e0befb7d9769fa9d486fff70f911871141d72ec052514e4a290939a0aa3</citedby><cites>FETCH-LOGICAL-c336t-955358e0befb7d9769fa9d486fff70f911871141d72ec052514e4a290939a0aa3</cites><orcidid>0000-0001-6215-197X ; 0000-0001-8745-1258 ; 0000-0002-6348-3607 ; 0000-0003-4607-4497 ; 0000-0001-9596-3069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33629665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Filova, Elena</creatorcontrib><creatorcontrib>Steinerova, Marie</creatorcontrib><creatorcontrib>Travnickova, Martina</creatorcontrib><creatorcontrib>Knitlova, Jarmila</creatorcontrib><creatorcontrib>Musilkova, Jana</creatorcontrib><creatorcontrib>Eckhardt, Adam</creatorcontrib><creatorcontrib>Hadraba, Daniel</creatorcontrib><creatorcontrib>Matejka, Roman</creatorcontrib><creatorcontrib>Prazak, Simon</creatorcontrib><creatorcontrib>Stepanovska, Jana</creatorcontrib><creatorcontrib>Kucerova, Johanka</creatorcontrib><creatorcontrib>Riedel, Tomáš</creatorcontrib><creatorcontrib>Brynda, Eduard</creatorcontrib><creatorcontrib>Lodererova, Alena</creatorcontrib><creatorcontrib>Honsova, Eva</creatorcontrib><creatorcontrib>Pirk, Jan</creatorcontrib><creatorcontrib>Konarik, Miroslav</creatorcontrib><creatorcontrib>Bacakova, Lucie</creatorcontrib><title>Accelerated in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts</title><title>Biomedical materials (Bristol)</title><addtitle>Biomed Mater</addtitle><description>An ideal decellularized allogenic or xenogeneic cardiovascular graft should be capable of preventing thrombus formation after implantation. The antithrombogenicity of the graft is ensured by a confluent endothelial cell layer formed on its surface. Later repopulation and remodeling of the scaffold by the patient's cells should result in the formation of living autologous tissue. In the work presented here, decellularized porcine pericardium scaffolds were modified by growing a fibrin mesh on the surface and inside the scaffolds, and by attaching heparin and human vascular endothelial growth factor (VEGF) to this mesh. Then the scaffolds were seeded with human adipose tissue-derived stem cells (ASCs). While the ASCs grew only on the surface of the decellularized pericardium, the fibrin-modified scaffolds were entirely repopulated in 28 d, and the scaffolds modified with fibrin, heparin and VEGF were already repopulated within 6 d. Label free mass spectrometry revealed fibronectin, collagens, and other extracellular matrix proteins produced by ASCs during recellularization. Thin layers of human umbilical endothelial cells were formed within 4 d after the cells were seeded on the surfaces of the scaffold, which had previously been seeded with ASCs. The results indicate that an artificial tissue prepared by in vitro recellularization and remodeling of decellularized non-autologous pericardium with autologous ASCs seems to be a promising candidate for cardiovascular grafts capable of accelerating in situ endothelialization. ASCs resemble the valve interstitial cells present in heart valves. An advantage of this approach is that ASCs can easily be collected from the patient by liposuction.</description><subject>Adipose Tissue - cytology</subject><subject>Animals</subject><subject>Bioprosthesis</subject><subject>Cell Proliferation</subject><subject>Collagen - chemistry</subject><subject>Decellularized Extracellular Matrix - chemistry</subject><subject>Endothelial Cells - cytology</subject><subject>Extracellular Matrix - metabolism</subject><subject>Fibrinogen - chemistry</subject><subject>Fibronectins - chemistry</subject><subject>Heart Valves</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Lipectomy</subject><subject>Microscopy, Fluorescence</subject><subject>Pericardium - metabolism</subject><subject>Pericardium - pathology</subject><subject>Stem Cells</subject><subject>Swine</subject><subject>Thrombin - chemistry</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><issn>1748-6041</issn><issn>1748-605X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkM1LxDAQxYMo7rp69yQ5eqmbNEnbHJfFLxC8KHgL03xIpG3WpF3Qv97WXRcPwzwebx7DD6FLSm4oqaolLXmVFUS8LaGuTW2O0PxgHR80pzN0ltIHIUIKJk_RjLEil0Uh5sittLaNjdBbg32Ht76PAUc7ms3QQPTf0PvQ4eCw-WeO4U2I2ncWb2z0GqLxQ4tdiPhXhy0kPUXxewTXp3N04qBJ9mK_F-j17vZl_ZA9Pd8_rldPmR5f6jMpBBOVJbV1dWlkWUgH0vCqcM6VxElKq5JSTk2ZW01ELii3HHJJJJNAANgCXe96NzF8Djb1qvVpehs6G4akci4ZHycXY5TsojqGlKJ1ahN9C_FLUaImumrCpyaUakd3PLnatw91a83h4A8n-wFYhHku</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Filova, Elena</creator><creator>Steinerova, Marie</creator><creator>Travnickova, Martina</creator><creator>Knitlova, Jarmila</creator><creator>Musilkova, Jana</creator><creator>Eckhardt, Adam</creator><creator>Hadraba, Daniel</creator><creator>Matejka, Roman</creator><creator>Prazak, Simon</creator><creator>Stepanovska, Jana</creator><creator>Kucerova, Johanka</creator><creator>Riedel, Tomáš</creator><creator>Brynda, Eduard</creator><creator>Lodererova, Alena</creator><creator>Honsova, Eva</creator><creator>Pirk, Jan</creator><creator>Konarik, Miroslav</creator><creator>Bacakova, Lucie</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6215-197X</orcidid><orcidid>https://orcid.org/0000-0001-8745-1258</orcidid><orcidid>https://orcid.org/0000-0002-6348-3607</orcidid><orcidid>https://orcid.org/0000-0003-4607-4497</orcidid><orcidid>https://orcid.org/0000-0001-9596-3069</orcidid></search><sort><creationdate>20210301</creationdate><title>Accelerated in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts</title><author>Filova, Elena ; Steinerova, Marie ; Travnickova, Martina ; Knitlova, Jarmila ; Musilkova, Jana ; Eckhardt, Adam ; Hadraba, Daniel ; Matejka, Roman ; Prazak, Simon ; Stepanovska, Jana ; Kucerova, Johanka ; Riedel, Tomáš ; Brynda, Eduard ; Lodererova, Alena ; Honsova, Eva ; Pirk, Jan ; Konarik, Miroslav ; Bacakova, Lucie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-955358e0befb7d9769fa9d486fff70f911871141d72ec052514e4a290939a0aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adipose Tissue - cytology</topic><topic>Animals</topic><topic>Bioprosthesis</topic><topic>Cell Proliferation</topic><topic>Collagen - chemistry</topic><topic>Decellularized Extracellular Matrix - chemistry</topic><topic>Endothelial Cells - cytology</topic><topic>Extracellular Matrix - metabolism</topic><topic>Fibrinogen - chemistry</topic><topic>Fibronectins - chemistry</topic><topic>Heart Valves</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Lipectomy</topic><topic>Microscopy, Fluorescence</topic><topic>Pericardium - metabolism</topic><topic>Pericardium - pathology</topic><topic>Stem Cells</topic><topic>Swine</topic><topic>Thrombin - chemistry</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filova, Elena</creatorcontrib><creatorcontrib>Steinerova, Marie</creatorcontrib><creatorcontrib>Travnickova, Martina</creatorcontrib><creatorcontrib>Knitlova, Jarmila</creatorcontrib><creatorcontrib>Musilkova, Jana</creatorcontrib><creatorcontrib>Eckhardt, Adam</creatorcontrib><creatorcontrib>Hadraba, Daniel</creatorcontrib><creatorcontrib>Matejka, Roman</creatorcontrib><creatorcontrib>Prazak, Simon</creatorcontrib><creatorcontrib>Stepanovska, Jana</creatorcontrib><creatorcontrib>Kucerova, Johanka</creatorcontrib><creatorcontrib>Riedel, Tomáš</creatorcontrib><creatorcontrib>Brynda, Eduard</creatorcontrib><creatorcontrib>Lodererova, Alena</creatorcontrib><creatorcontrib>Honsova, Eva</creatorcontrib><creatorcontrib>Pirk, Jan</creatorcontrib><creatorcontrib>Konarik, Miroslav</creatorcontrib><creatorcontrib>Bacakova, Lucie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical materials (Bristol)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filova, Elena</au><au>Steinerova, Marie</au><au>Travnickova, Martina</au><au>Knitlova, Jarmila</au><au>Musilkova, Jana</au><au>Eckhardt, Adam</au><au>Hadraba, Daniel</au><au>Matejka, Roman</au><au>Prazak, Simon</au><au>Stepanovska, Jana</au><au>Kucerova, Johanka</au><au>Riedel, Tomáš</au><au>Brynda, Eduard</au><au>Lodererova, Alena</au><au>Honsova, Eva</au><au>Pirk, Jan</au><au>Konarik, Miroslav</au><au>Bacakova, Lucie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts</atitle><jtitle>Biomedical materials (Bristol)</jtitle><addtitle>Biomed Mater</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>16</volume><issue>2</issue><spage>025024</spage><epage>025024</epage><pages>025024-025024</pages><issn>1748-6041</issn><eissn>1748-605X</eissn><abstract>An ideal decellularized allogenic or xenogeneic cardiovascular graft should be capable of preventing thrombus formation after implantation. The antithrombogenicity of the graft is ensured by a confluent endothelial cell layer formed on its surface. Later repopulation and remodeling of the scaffold by the patient's cells should result in the formation of living autologous tissue. In the work presented here, decellularized porcine pericardium scaffolds were modified by growing a fibrin mesh on the surface and inside the scaffolds, and by attaching heparin and human vascular endothelial growth factor (VEGF) to this mesh. Then the scaffolds were seeded with human adipose tissue-derived stem cells (ASCs). While the ASCs grew only on the surface of the decellularized pericardium, the fibrin-modified scaffolds were entirely repopulated in 28 d, and the scaffolds modified with fibrin, heparin and VEGF were already repopulated within 6 d. Label free mass spectrometry revealed fibronectin, collagens, and other extracellular matrix proteins produced by ASCs during recellularization. Thin layers of human umbilical endothelial cells were formed within 4 d after the cells were seeded on the surfaces of the scaffold, which had previously been seeded with ASCs. The results indicate that an artificial tissue prepared by in vitro recellularization and remodeling of decellularized non-autologous pericardium with autologous ASCs seems to be a promising candidate for cardiovascular grafts capable of accelerating in situ endothelialization. ASCs resemble the valve interstitial cells present in heart valves. An advantage of this approach is that ASCs can easily be collected from the patient by liposuction.</abstract><cop>England</cop><pmid>33629665</pmid><doi>10.1088/1748-605X/abbdbd</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6215-197X</orcidid><orcidid>https://orcid.org/0000-0001-8745-1258</orcidid><orcidid>https://orcid.org/0000-0002-6348-3607</orcidid><orcidid>https://orcid.org/0000-0003-4607-4497</orcidid><orcidid>https://orcid.org/0000-0001-9596-3069</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-6041
ispartof Biomedical materials (Bristol), 2021-03, Vol.16 (2), p.025024-025024
issn 1748-6041
1748-605X
language eng
recordid cdi_proquest_miscellaneous_2493449325
source MEDLINE; Institute of Physics Journals
subjects Adipose Tissue - cytology
Animals
Bioprosthesis
Cell Proliferation
Collagen - chemistry
Decellularized Extracellular Matrix - chemistry
Endothelial Cells - cytology
Extracellular Matrix - metabolism
Fibrinogen - chemistry
Fibronectins - chemistry
Heart Valves
Human Umbilical Vein Endothelial Cells
Humans
In Vitro Techniques
Lipectomy
Microscopy, Fluorescence
Pericardium - metabolism
Pericardium - pathology
Stem Cells
Swine
Thrombin - chemistry
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Vascular Endothelial Growth Factor A - metabolism
title Accelerated in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20in%20vitro%20recellularization%20of%20decellularized%20porcine%20pericardium%20for%20cardiovascular%20grafts&rft.jtitle=Biomedical%20materials%20(Bristol)&rft.au=Filova,%20Elena&rft.date=2021-03-01&rft.volume=16&rft.issue=2&rft.spage=025024&rft.epage=025024&rft.pages=025024-025024&rft.issn=1748-6041&rft.eissn=1748-605X&rft_id=info:doi/10.1088/1748-605X/abbdbd&rft_dat=%3Cproquest_cross%3E2493449325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493449325&rft_id=info:pmid/33629665&rfr_iscdi=true