Long non-coding RNA DANCR modulates osteogenic differentiation by regulating the miR-1301-3p/PROX1 axis
The balance of osteoblasts and marrow adipocytes from bone marrow mesenchymal stem cells (BM-MSCs) maintains bone health. Under aging or other pathological stimuli, BM-MSCs will preferentially differentiate into marrow adipocytes and reduce osteoblasts, leading to osteoporosis. Long non-coding RNA d...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular biochemistry 2021-06, Vol.476 (6), p.2503-2512 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2512 |
---|---|
container_issue | 6 |
container_start_page | 2503 |
container_title | Molecular and cellular biochemistry |
container_volume | 476 |
creator | Weng, Wei Di, Shengdi Xing, Shitong Sun, Zhengguo Shen, Zheyuan Dou, Xiaojie He, Shouyu Tang, Huibin Min, Jikang |
description | The balance of osteoblasts and marrow adipocytes from bone marrow mesenchymal stem cells (BM-MSCs) maintains bone health. Under aging or other pathological stimuli, BM-MSCs will preferentially differentiate into marrow adipocytes and reduce osteoblasts, leading to osteoporosis. Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) participates in the osteogenic differentiation of human BM-MSCs, but the mechanism by which DANCR regulates the osteogenic differentiation of human BM-MSCs has not been fully explained. We observed that DANCR and prospero homeobox 1 (PROX1) were downregulated during osteogenic differentiation of human BM-MSCs, while miR-1301-3p had an opposite trend. DANCR overexpression decreased the levels of alkaline phosphatase, RUNX2, osteocalcin, Osterix in BM-MSCs after osteogenic induction, but DANCR silencing had the opposite result. Moreover, DANCR sponged miR-1301-3p to regulate PROX1 expression. miR-1301-3p overexpression reversed the suppressive role of DANCR elevation on the osteogenic differentiation of human BM-MSCs. Also, PROX1 elevation abolished the promoting role of miR-1301-3p overexpression on the osteogenic differentiation of human BM-MSCs. In conclusion, DANCR suppressed the osteogenic differentiation of human BM-MSCs through the miR-1301-3p/PROX1 axis, offering a novel mechanism by which DANCR is responsible for the osteogenic differentiation of human BM-MSCs. |
doi_str_mv | 10.1007/s11010-021-04074-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_proquest_miscellaneous_2493449239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A661806471</galeid><sourcerecordid>A661806471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-86e77034601ae8a46e3da4aab134bf46d15441a01a4133ee6fdd7bf44e895b123</originalsourceid><addsrcrecordid>eNqNkV2L1TAQhoso7nH1D3ghBW8Eye5Mkn5dHurHCoddOSh4F9J2WrO0ybFp0f33ptvdI4qI5CJD5nlnXvJG0XOEMwTIzj0iIDDgyEBCJlnxINpgkgkmCyweRhsQACzHLDuJnnh_DYEGxMfRiRApL7jETdTtnO1i6yyrXWNCub_cxm-2l-U-Hlwz93oiHzs_kevImjpuTNvSSHYyejLOxtVNPFK3cIt4-krxYPYMBSATh_OP-6svGOsfxj-NHrW69_Ts7j6NPr97-6m8YLur9x_K7Y7VUvKJ5SllGQiZAmrKtUxJNFpqXaGQVSvTBhMpUYeuRCGI0rZpstCQlBdJhVycRq_WuYfRfZvJT2owvqa-15bc7BWXhZCy4KII6Ms_0Gs3jza4UzzhqcwKHnYcqU73pIxt3TTqehmqtmmKOQQQA3X2FyqchgZTO0utCe-_CfgqqEfn_UitOoxm0OONQlBLumpNV4V01W26anH84s7xXA3UHCX3cQbg9Qp8p8q1vjZkazpiAJBy5HmWhAoWOv9_ujTTbeKlm-0UpGKV-oDbjsZff_cP_z8B-JHLrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526479213</pqid></control><display><type>article</type><title>Long non-coding RNA DANCR modulates osteogenic differentiation by regulating the miR-1301-3p/PROX1 axis</title><source>Springer Nature - Complete Springer Journals</source><creator>Weng, Wei ; Di, Shengdi ; Xing, Shitong ; Sun, Zhengguo ; Shen, Zheyuan ; Dou, Xiaojie ; He, Shouyu ; Tang, Huibin ; Min, Jikang</creator><creatorcontrib>Weng, Wei ; Di, Shengdi ; Xing, Shitong ; Sun, Zhengguo ; Shen, Zheyuan ; Dou, Xiaojie ; He, Shouyu ; Tang, Huibin ; Min, Jikang</creatorcontrib><description>The balance of osteoblasts and marrow adipocytes from bone marrow mesenchymal stem cells (BM-MSCs) maintains bone health. Under aging or other pathological stimuli, BM-MSCs will preferentially differentiate into marrow adipocytes and reduce osteoblasts, leading to osteoporosis. Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) participates in the osteogenic differentiation of human BM-MSCs, but the mechanism by which DANCR regulates the osteogenic differentiation of human BM-MSCs has not been fully explained. We observed that DANCR and prospero homeobox 1 (PROX1) were downregulated during osteogenic differentiation of human BM-MSCs, while miR-1301-3p had an opposite trend. DANCR overexpression decreased the levels of alkaline phosphatase, RUNX2, osteocalcin, Osterix in BM-MSCs after osteogenic induction, but DANCR silencing had the opposite result. Moreover, DANCR sponged miR-1301-3p to regulate PROX1 expression. miR-1301-3p overexpression reversed the suppressive role of DANCR elevation on the osteogenic differentiation of human BM-MSCs. Also, PROX1 elevation abolished the promoting role of miR-1301-3p overexpression on the osteogenic differentiation of human BM-MSCs. In conclusion, DANCR suppressed the osteogenic differentiation of human BM-MSCs through the miR-1301-3p/PROX1 axis, offering a novel mechanism by which DANCR is responsible for the osteogenic differentiation of human BM-MSCs.</description><identifier>ISSN: 0300-8177</identifier><identifier>EISSN: 1573-4919</identifier><identifier>DOI: 10.1007/s11010-021-04074-9</identifier><identifier>PMID: 33629241</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adipocytes ; Aging ; Alkaline phosphatase ; Biochemistry ; Biomedical and Life Sciences ; Biomedical materials ; Bone marrow ; Cardiology ; Cbfa-1 protein ; Cell Biology ; Differentiation (biology) ; Homeobox ; Life Sciences ; Life Sciences & Biomedicine ; Medical Biochemistry ; Mesenchyme ; Neomycin ; Non-coding RNA ; Oncology ; Osteoblastogenesis ; Osteoblasts ; Osteocalcin ; Osteoporosis ; Prospero protein ; RNA ; Science & Technology ; Stem cells</subject><ispartof>Molecular and cellular biochemistry, 2021-06, Vol.476 (6), p.2503-2512</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000621287500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c442t-86e77034601ae8a46e3da4aab134bf46d15441a01a4133ee6fdd7bf44e895b123</citedby><cites>FETCH-LOGICAL-c442t-86e77034601ae8a46e3da4aab134bf46d15441a01a4133ee6fdd7bf44e895b123</cites><orcidid>0000-0002-9149-5795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11010-021-04074-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11010-021-04074-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33629241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weng, Wei</creatorcontrib><creatorcontrib>Di, Shengdi</creatorcontrib><creatorcontrib>Xing, Shitong</creatorcontrib><creatorcontrib>Sun, Zhengguo</creatorcontrib><creatorcontrib>Shen, Zheyuan</creatorcontrib><creatorcontrib>Dou, Xiaojie</creatorcontrib><creatorcontrib>He, Shouyu</creatorcontrib><creatorcontrib>Tang, Huibin</creatorcontrib><creatorcontrib>Min, Jikang</creatorcontrib><title>Long non-coding RNA DANCR modulates osteogenic differentiation by regulating the miR-1301-3p/PROX1 axis</title><title>Molecular and cellular biochemistry</title><addtitle>Mol Cell Biochem</addtitle><addtitle>MOL CELL BIOCHEM</addtitle><addtitle>Mol Cell Biochem</addtitle><description>The balance of osteoblasts and marrow adipocytes from bone marrow mesenchymal stem cells (BM-MSCs) maintains bone health. Under aging or other pathological stimuli, BM-MSCs will preferentially differentiate into marrow adipocytes and reduce osteoblasts, leading to osteoporosis. Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) participates in the osteogenic differentiation of human BM-MSCs, but the mechanism by which DANCR regulates the osteogenic differentiation of human BM-MSCs has not been fully explained. We observed that DANCR and prospero homeobox 1 (PROX1) were downregulated during osteogenic differentiation of human BM-MSCs, while miR-1301-3p had an opposite trend. DANCR overexpression decreased the levels of alkaline phosphatase, RUNX2, osteocalcin, Osterix in BM-MSCs after osteogenic induction, but DANCR silencing had the opposite result. Moreover, DANCR sponged miR-1301-3p to regulate PROX1 expression. miR-1301-3p overexpression reversed the suppressive role of DANCR elevation on the osteogenic differentiation of human BM-MSCs. Also, PROX1 elevation abolished the promoting role of miR-1301-3p overexpression on the osteogenic differentiation of human BM-MSCs. In conclusion, DANCR suppressed the osteogenic differentiation of human BM-MSCs through the miR-1301-3p/PROX1 axis, offering a novel mechanism by which DANCR is responsible for the osteogenic differentiation of human BM-MSCs.</description><subject>Adipocytes</subject><subject>Aging</subject><subject>Alkaline phosphatase</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical materials</subject><subject>Bone marrow</subject><subject>Cardiology</subject><subject>Cbfa-1 protein</subject><subject>Cell Biology</subject><subject>Differentiation (biology)</subject><subject>Homeobox</subject><subject>Life Sciences</subject><subject>Life Sciences & Biomedicine</subject><subject>Medical Biochemistry</subject><subject>Mesenchyme</subject><subject>Neomycin</subject><subject>Non-coding RNA</subject><subject>Oncology</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteocalcin</subject><subject>Osteoporosis</subject><subject>Prospero protein</subject><subject>RNA</subject><subject>Science & Technology</subject><subject>Stem cells</subject><issn>0300-8177</issn><issn>1573-4919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV2L1TAQhoso7nH1D3ghBW8Eye5Mkn5dHurHCoddOSh4F9J2WrO0ybFp0f33ptvdI4qI5CJD5nlnXvJG0XOEMwTIzj0iIDDgyEBCJlnxINpgkgkmCyweRhsQACzHLDuJnnh_DYEGxMfRiRApL7jETdTtnO1i6yyrXWNCub_cxm-2l-U-Hlwz93oiHzs_kevImjpuTNvSSHYyejLOxtVNPFK3cIt4-krxYPYMBSATh_OP-6svGOsfxj-NHrW69_Ts7j6NPr97-6m8YLur9x_K7Y7VUvKJ5SllGQiZAmrKtUxJNFpqXaGQVSvTBhMpUYeuRCGI0rZpstCQlBdJhVycRq_WuYfRfZvJT2owvqa-15bc7BWXhZCy4KII6Ms_0Gs3jza4UzzhqcwKHnYcqU73pIxt3TTqehmqtmmKOQQQA3X2FyqchgZTO0utCe-_CfgqqEfn_UitOoxm0OONQlBLumpNV4V01W26anH84s7xXA3UHCX3cQbg9Qp8p8q1vjZkazpiAJBy5HmWhAoWOv9_ujTTbeKlm-0UpGKV-oDbjsZff_cP_z8B-JHLrA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Weng, Wei</creator><creator>Di, Shengdi</creator><creator>Xing, Shitong</creator><creator>Sun, Zhengguo</creator><creator>Shen, Zheyuan</creator><creator>Dou, Xiaojie</creator><creator>He, Shouyu</creator><creator>Tang, Huibin</creator><creator>Min, Jikang</creator><general>Springer US</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9149-5795</orcidid></search><sort><creationdate>20210601</creationdate><title>Long non-coding RNA DANCR modulates osteogenic differentiation by regulating the miR-1301-3p/PROX1 axis</title><author>Weng, Wei ; Di, Shengdi ; Xing, Shitong ; Sun, Zhengguo ; Shen, Zheyuan ; Dou, Xiaojie ; He, Shouyu ; Tang, Huibin ; Min, Jikang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-86e77034601ae8a46e3da4aab134bf46d15441a01a4133ee6fdd7bf44e895b123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adipocytes</topic><topic>Aging</topic><topic>Alkaline phosphatase</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical materials</topic><topic>Bone marrow</topic><topic>Cardiology</topic><topic>Cbfa-1 protein</topic><topic>Cell Biology</topic><topic>Differentiation (biology)</topic><topic>Homeobox</topic><topic>Life Sciences</topic><topic>Life Sciences & Biomedicine</topic><topic>Medical Biochemistry</topic><topic>Mesenchyme</topic><topic>Neomycin</topic><topic>Non-coding RNA</topic><topic>Oncology</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteocalcin</topic><topic>Osteoporosis</topic><topic>Prospero protein</topic><topic>RNA</topic><topic>Science & Technology</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Wei</creatorcontrib><creatorcontrib>Di, Shengdi</creatorcontrib><creatorcontrib>Xing, Shitong</creatorcontrib><creatorcontrib>Sun, Zhengguo</creatorcontrib><creatorcontrib>Shen, Zheyuan</creatorcontrib><creatorcontrib>Dou, Xiaojie</creatorcontrib><creatorcontrib>He, Shouyu</creatorcontrib><creatorcontrib>Tang, Huibin</creatorcontrib><creatorcontrib>Min, Jikang</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular and cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Wei</au><au>Di, Shengdi</au><au>Xing, Shitong</au><au>Sun, Zhengguo</au><au>Shen, Zheyuan</au><au>Dou, Xiaojie</au><au>He, Shouyu</au><au>Tang, Huibin</au><au>Min, Jikang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long non-coding RNA DANCR modulates osteogenic differentiation by regulating the miR-1301-3p/PROX1 axis</atitle><jtitle>Molecular and cellular biochemistry</jtitle><stitle>Mol Cell Biochem</stitle><stitle>MOL CELL BIOCHEM</stitle><addtitle>Mol Cell Biochem</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>476</volume><issue>6</issue><spage>2503</spage><epage>2512</epage><pages>2503-2512</pages><issn>0300-8177</issn><eissn>1573-4919</eissn><abstract>The balance of osteoblasts and marrow adipocytes from bone marrow mesenchymal stem cells (BM-MSCs) maintains bone health. Under aging or other pathological stimuli, BM-MSCs will preferentially differentiate into marrow adipocytes and reduce osteoblasts, leading to osteoporosis. Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) participates in the osteogenic differentiation of human BM-MSCs, but the mechanism by which DANCR regulates the osteogenic differentiation of human BM-MSCs has not been fully explained. We observed that DANCR and prospero homeobox 1 (PROX1) were downregulated during osteogenic differentiation of human BM-MSCs, while miR-1301-3p had an opposite trend. DANCR overexpression decreased the levels of alkaline phosphatase, RUNX2, osteocalcin, Osterix in BM-MSCs after osteogenic induction, but DANCR silencing had the opposite result. Moreover, DANCR sponged miR-1301-3p to regulate PROX1 expression. miR-1301-3p overexpression reversed the suppressive role of DANCR elevation on the osteogenic differentiation of human BM-MSCs. Also, PROX1 elevation abolished the promoting role of miR-1301-3p overexpression on the osteogenic differentiation of human BM-MSCs. In conclusion, DANCR suppressed the osteogenic differentiation of human BM-MSCs through the miR-1301-3p/PROX1 axis, offering a novel mechanism by which DANCR is responsible for the osteogenic differentiation of human BM-MSCs.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33629241</pmid><doi>10.1007/s11010-021-04074-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9149-5795</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0300-8177 |
ispartof | Molecular and cellular biochemistry, 2021-06, Vol.476 (6), p.2503-2512 |
issn | 0300-8177 1573-4919 |
language | eng |
recordid | cdi_proquest_miscellaneous_2493449239 |
source | Springer Nature - Complete Springer Journals |
subjects | Adipocytes Aging Alkaline phosphatase Biochemistry Biomedical and Life Sciences Biomedical materials Bone marrow Cardiology Cbfa-1 protein Cell Biology Differentiation (biology) Homeobox Life Sciences Life Sciences & Biomedicine Medical Biochemistry Mesenchyme Neomycin Non-coding RNA Oncology Osteoblastogenesis Osteoblasts Osteocalcin Osteoporosis Prospero protein RNA Science & Technology Stem cells |
title | Long non-coding RNA DANCR modulates osteogenic differentiation by regulating the miR-1301-3p/PROX1 axis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20non-coding%20RNA%20DANCR%20modulates%20osteogenic%20differentiation%20by%20regulating%20the%20miR-1301-3p/PROX1%20axis&rft.jtitle=Molecular%20and%20cellular%20biochemistry&rft.au=Weng,%20Wei&rft.date=2021-06-01&rft.volume=476&rft.issue=6&rft.spage=2503&rft.epage=2512&rft.pages=2503-2512&rft.issn=0300-8177&rft.eissn=1573-4919&rft_id=info:doi/10.1007/s11010-021-04074-9&rft_dat=%3Cgale_webof%3EA661806471%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526479213&rft_id=info:pmid/33629241&rft_galeid=A661806471&rfr_iscdi=true |