Long non-coding RNA DANCR modulates osteogenic differentiation by regulating the miR-1301-3p/PROX1 axis

The balance of osteoblasts and marrow adipocytes from bone marrow mesenchymal stem cells (BM-MSCs) maintains bone health. Under aging or other pathological stimuli, BM-MSCs will preferentially differentiate into marrow adipocytes and reduce osteoblasts, leading to osteoporosis. Long non-coding RNA d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular biochemistry 2021-06, Vol.476 (6), p.2503-2512
Hauptverfasser: Weng, Wei, Di, Shengdi, Xing, Shitong, Sun, Zhengguo, Shen, Zheyuan, Dou, Xiaojie, He, Shouyu, Tang, Huibin, Min, Jikang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2512
container_issue 6
container_start_page 2503
container_title Molecular and cellular biochemistry
container_volume 476
creator Weng, Wei
Di, Shengdi
Xing, Shitong
Sun, Zhengguo
Shen, Zheyuan
Dou, Xiaojie
He, Shouyu
Tang, Huibin
Min, Jikang
description The balance of osteoblasts and marrow adipocytes from bone marrow mesenchymal stem cells (BM-MSCs) maintains bone health. Under aging or other pathological stimuli, BM-MSCs will preferentially differentiate into marrow adipocytes and reduce osteoblasts, leading to osteoporosis. Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) participates in the osteogenic differentiation of human BM-MSCs, but the mechanism by which DANCR regulates the osteogenic differentiation of human BM-MSCs has not been fully explained. We observed that DANCR and prospero homeobox 1 (PROX1) were downregulated during osteogenic differentiation of human BM-MSCs, while miR-1301-3p had an opposite trend. DANCR overexpression decreased the levels of alkaline phosphatase, RUNX2, osteocalcin, Osterix in BM-MSCs after osteogenic induction, but DANCR silencing had the opposite result. Moreover, DANCR sponged miR-1301-3p to regulate PROX1 expression. miR-1301-3p overexpression reversed the suppressive role of DANCR elevation on the osteogenic differentiation of human BM-MSCs. Also, PROX1 elevation abolished the promoting role of miR-1301-3p overexpression on the osteogenic differentiation of human BM-MSCs. In conclusion, DANCR suppressed the osteogenic differentiation of human BM-MSCs through the miR-1301-3p/PROX1 axis, offering a novel mechanism by which DANCR is responsible for the osteogenic differentiation of human BM-MSCs.
doi_str_mv 10.1007/s11010-021-04074-9
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_proquest_miscellaneous_2493449239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A661806471</galeid><sourcerecordid>A661806471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-86e77034601ae8a46e3da4aab134bf46d15441a01a4133ee6fdd7bf44e895b123</originalsourceid><addsrcrecordid>eNqNkV2L1TAQhoso7nH1D3ghBW8Eye5Mkn5dHurHCoddOSh4F9J2WrO0ybFp0f33ptvdI4qI5CJD5nlnXvJG0XOEMwTIzj0iIDDgyEBCJlnxINpgkgkmCyweRhsQACzHLDuJnnh_DYEGxMfRiRApL7jETdTtnO1i6yyrXWNCub_cxm-2l-U-Hlwz93oiHzs_kevImjpuTNvSSHYyejLOxtVNPFK3cIt4-krxYPYMBSATh_OP-6svGOsfxj-NHrW69_Ts7j6NPr97-6m8YLur9x_K7Y7VUvKJ5SllGQiZAmrKtUxJNFpqXaGQVSvTBhMpUYeuRCGI0rZpstCQlBdJhVycRq_WuYfRfZvJT2owvqa-15bc7BWXhZCy4KII6Ms_0Gs3jza4UzzhqcwKHnYcqU73pIxt3TTqehmqtmmKOQQQA3X2FyqchgZTO0utCe-_CfgqqEfn_UitOoxm0OONQlBLumpNV4V01W26anH84s7xXA3UHCX3cQbg9Qp8p8q1vjZkazpiAJBy5HmWhAoWOv9_ujTTbeKlm-0UpGKV-oDbjsZff_cP_z8B-JHLrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526479213</pqid></control><display><type>article</type><title>Long non-coding RNA DANCR modulates osteogenic differentiation by regulating the miR-1301-3p/PROX1 axis</title><source>Springer Nature - Complete Springer Journals</source><creator>Weng, Wei ; Di, Shengdi ; Xing, Shitong ; Sun, Zhengguo ; Shen, Zheyuan ; Dou, Xiaojie ; He, Shouyu ; Tang, Huibin ; Min, Jikang</creator><creatorcontrib>Weng, Wei ; Di, Shengdi ; Xing, Shitong ; Sun, Zhengguo ; Shen, Zheyuan ; Dou, Xiaojie ; He, Shouyu ; Tang, Huibin ; Min, Jikang</creatorcontrib><description>The balance of osteoblasts and marrow adipocytes from bone marrow mesenchymal stem cells (BM-MSCs) maintains bone health. Under aging or other pathological stimuli, BM-MSCs will preferentially differentiate into marrow adipocytes and reduce osteoblasts, leading to osteoporosis. Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) participates in the osteogenic differentiation of human BM-MSCs, but the mechanism by which DANCR regulates the osteogenic differentiation of human BM-MSCs has not been fully explained. We observed that DANCR and prospero homeobox 1 (PROX1) were downregulated during osteogenic differentiation of human BM-MSCs, while miR-1301-3p had an opposite trend. DANCR overexpression decreased the levels of alkaline phosphatase, RUNX2, osteocalcin, Osterix in BM-MSCs after osteogenic induction, but DANCR silencing had the opposite result. Moreover, DANCR sponged miR-1301-3p to regulate PROX1 expression. miR-1301-3p overexpression reversed the suppressive role of DANCR elevation on the osteogenic differentiation of human BM-MSCs. Also, PROX1 elevation abolished the promoting role of miR-1301-3p overexpression on the osteogenic differentiation of human BM-MSCs. In conclusion, DANCR suppressed the osteogenic differentiation of human BM-MSCs through the miR-1301-3p/PROX1 axis, offering a novel mechanism by which DANCR is responsible for the osteogenic differentiation of human BM-MSCs.</description><identifier>ISSN: 0300-8177</identifier><identifier>EISSN: 1573-4919</identifier><identifier>DOI: 10.1007/s11010-021-04074-9</identifier><identifier>PMID: 33629241</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adipocytes ; Aging ; Alkaline phosphatase ; Biochemistry ; Biomedical and Life Sciences ; Biomedical materials ; Bone marrow ; Cardiology ; Cbfa-1 protein ; Cell Biology ; Differentiation (biology) ; Homeobox ; Life Sciences ; Life Sciences &amp; Biomedicine ; Medical Biochemistry ; Mesenchyme ; Neomycin ; Non-coding RNA ; Oncology ; Osteoblastogenesis ; Osteoblasts ; Osteocalcin ; Osteoporosis ; Prospero protein ; RNA ; Science &amp; Technology ; Stem cells</subject><ispartof>Molecular and cellular biochemistry, 2021-06, Vol.476 (6), p.2503-2512</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000621287500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c442t-86e77034601ae8a46e3da4aab134bf46d15441a01a4133ee6fdd7bf44e895b123</citedby><cites>FETCH-LOGICAL-c442t-86e77034601ae8a46e3da4aab134bf46d15441a01a4133ee6fdd7bf44e895b123</cites><orcidid>0000-0002-9149-5795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11010-021-04074-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11010-021-04074-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33629241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weng, Wei</creatorcontrib><creatorcontrib>Di, Shengdi</creatorcontrib><creatorcontrib>Xing, Shitong</creatorcontrib><creatorcontrib>Sun, Zhengguo</creatorcontrib><creatorcontrib>Shen, Zheyuan</creatorcontrib><creatorcontrib>Dou, Xiaojie</creatorcontrib><creatorcontrib>He, Shouyu</creatorcontrib><creatorcontrib>Tang, Huibin</creatorcontrib><creatorcontrib>Min, Jikang</creatorcontrib><title>Long non-coding RNA DANCR modulates osteogenic differentiation by regulating the miR-1301-3p/PROX1 axis</title><title>Molecular and cellular biochemistry</title><addtitle>Mol Cell Biochem</addtitle><addtitle>MOL CELL BIOCHEM</addtitle><addtitle>Mol Cell Biochem</addtitle><description>The balance of osteoblasts and marrow adipocytes from bone marrow mesenchymal stem cells (BM-MSCs) maintains bone health. Under aging or other pathological stimuli, BM-MSCs will preferentially differentiate into marrow adipocytes and reduce osteoblasts, leading to osteoporosis. Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) participates in the osteogenic differentiation of human BM-MSCs, but the mechanism by which DANCR regulates the osteogenic differentiation of human BM-MSCs has not been fully explained. We observed that DANCR and prospero homeobox 1 (PROX1) were downregulated during osteogenic differentiation of human BM-MSCs, while miR-1301-3p had an opposite trend. DANCR overexpression decreased the levels of alkaline phosphatase, RUNX2, osteocalcin, Osterix in BM-MSCs after osteogenic induction, but DANCR silencing had the opposite result. Moreover, DANCR sponged miR-1301-3p to regulate PROX1 expression. miR-1301-3p overexpression reversed the suppressive role of DANCR elevation on the osteogenic differentiation of human BM-MSCs. Also, PROX1 elevation abolished the promoting role of miR-1301-3p overexpression on the osteogenic differentiation of human BM-MSCs. In conclusion, DANCR suppressed the osteogenic differentiation of human BM-MSCs through the miR-1301-3p/PROX1 axis, offering a novel mechanism by which DANCR is responsible for the osteogenic differentiation of human BM-MSCs.</description><subject>Adipocytes</subject><subject>Aging</subject><subject>Alkaline phosphatase</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical materials</subject><subject>Bone marrow</subject><subject>Cardiology</subject><subject>Cbfa-1 protein</subject><subject>Cell Biology</subject><subject>Differentiation (biology)</subject><subject>Homeobox</subject><subject>Life Sciences</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Medical Biochemistry</subject><subject>Mesenchyme</subject><subject>Neomycin</subject><subject>Non-coding RNA</subject><subject>Oncology</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteocalcin</subject><subject>Osteoporosis</subject><subject>Prospero protein</subject><subject>RNA</subject><subject>Science &amp; Technology</subject><subject>Stem cells</subject><issn>0300-8177</issn><issn>1573-4919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV2L1TAQhoso7nH1D3ghBW8Eye5Mkn5dHurHCoddOSh4F9J2WrO0ybFp0f33ptvdI4qI5CJD5nlnXvJG0XOEMwTIzj0iIDDgyEBCJlnxINpgkgkmCyweRhsQACzHLDuJnnh_DYEGxMfRiRApL7jETdTtnO1i6yyrXWNCub_cxm-2l-U-Hlwz93oiHzs_kevImjpuTNvSSHYyejLOxtVNPFK3cIt4-krxYPYMBSATh_OP-6svGOsfxj-NHrW69_Ts7j6NPr97-6m8YLur9x_K7Y7VUvKJ5SllGQiZAmrKtUxJNFpqXaGQVSvTBhMpUYeuRCGI0rZpstCQlBdJhVycRq_WuYfRfZvJT2owvqa-15bc7BWXhZCy4KII6Ms_0Gs3jza4UzzhqcwKHnYcqU73pIxt3TTqehmqtmmKOQQQA3X2FyqchgZTO0utCe-_CfgqqEfn_UitOoxm0OONQlBLumpNV4V01W26anH84s7xXA3UHCX3cQbg9Qp8p8q1vjZkazpiAJBy5HmWhAoWOv9_ujTTbeKlm-0UpGKV-oDbjsZff_cP_z8B-JHLrA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Weng, Wei</creator><creator>Di, Shengdi</creator><creator>Xing, Shitong</creator><creator>Sun, Zhengguo</creator><creator>Shen, Zheyuan</creator><creator>Dou, Xiaojie</creator><creator>He, Shouyu</creator><creator>Tang, Huibin</creator><creator>Min, Jikang</creator><general>Springer US</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9149-5795</orcidid></search><sort><creationdate>20210601</creationdate><title>Long non-coding RNA DANCR modulates osteogenic differentiation by regulating the miR-1301-3p/PROX1 axis</title><author>Weng, Wei ; Di, Shengdi ; Xing, Shitong ; Sun, Zhengguo ; Shen, Zheyuan ; Dou, Xiaojie ; He, Shouyu ; Tang, Huibin ; Min, Jikang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-86e77034601ae8a46e3da4aab134bf46d15441a01a4133ee6fdd7bf44e895b123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adipocytes</topic><topic>Aging</topic><topic>Alkaline phosphatase</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical materials</topic><topic>Bone marrow</topic><topic>Cardiology</topic><topic>Cbfa-1 protein</topic><topic>Cell Biology</topic><topic>Differentiation (biology)</topic><topic>Homeobox</topic><topic>Life Sciences</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Medical Biochemistry</topic><topic>Mesenchyme</topic><topic>Neomycin</topic><topic>Non-coding RNA</topic><topic>Oncology</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteocalcin</topic><topic>Osteoporosis</topic><topic>Prospero protein</topic><topic>RNA</topic><topic>Science &amp; Technology</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Wei</creatorcontrib><creatorcontrib>Di, Shengdi</creatorcontrib><creatorcontrib>Xing, Shitong</creatorcontrib><creatorcontrib>Sun, Zhengguo</creatorcontrib><creatorcontrib>Shen, Zheyuan</creatorcontrib><creatorcontrib>Dou, Xiaojie</creatorcontrib><creatorcontrib>He, Shouyu</creatorcontrib><creatorcontrib>Tang, Huibin</creatorcontrib><creatorcontrib>Min, Jikang</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular and cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Wei</au><au>Di, Shengdi</au><au>Xing, Shitong</au><au>Sun, Zhengguo</au><au>Shen, Zheyuan</au><au>Dou, Xiaojie</au><au>He, Shouyu</au><au>Tang, Huibin</au><au>Min, Jikang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long non-coding RNA DANCR modulates osteogenic differentiation by regulating the miR-1301-3p/PROX1 axis</atitle><jtitle>Molecular and cellular biochemistry</jtitle><stitle>Mol Cell Biochem</stitle><stitle>MOL CELL BIOCHEM</stitle><addtitle>Mol Cell Biochem</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>476</volume><issue>6</issue><spage>2503</spage><epage>2512</epage><pages>2503-2512</pages><issn>0300-8177</issn><eissn>1573-4919</eissn><abstract>The balance of osteoblasts and marrow adipocytes from bone marrow mesenchymal stem cells (BM-MSCs) maintains bone health. Under aging or other pathological stimuli, BM-MSCs will preferentially differentiate into marrow adipocytes and reduce osteoblasts, leading to osteoporosis. Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) participates in the osteogenic differentiation of human BM-MSCs, but the mechanism by which DANCR regulates the osteogenic differentiation of human BM-MSCs has not been fully explained. We observed that DANCR and prospero homeobox 1 (PROX1) were downregulated during osteogenic differentiation of human BM-MSCs, while miR-1301-3p had an opposite trend. DANCR overexpression decreased the levels of alkaline phosphatase, RUNX2, osteocalcin, Osterix in BM-MSCs after osteogenic induction, but DANCR silencing had the opposite result. Moreover, DANCR sponged miR-1301-3p to regulate PROX1 expression. miR-1301-3p overexpression reversed the suppressive role of DANCR elevation on the osteogenic differentiation of human BM-MSCs. Also, PROX1 elevation abolished the promoting role of miR-1301-3p overexpression on the osteogenic differentiation of human BM-MSCs. In conclusion, DANCR suppressed the osteogenic differentiation of human BM-MSCs through the miR-1301-3p/PROX1 axis, offering a novel mechanism by which DANCR is responsible for the osteogenic differentiation of human BM-MSCs.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33629241</pmid><doi>10.1007/s11010-021-04074-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9149-5795</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0300-8177
ispartof Molecular and cellular biochemistry, 2021-06, Vol.476 (6), p.2503-2512
issn 0300-8177
1573-4919
language eng
recordid cdi_proquest_miscellaneous_2493449239
source Springer Nature - Complete Springer Journals
subjects Adipocytes
Aging
Alkaline phosphatase
Biochemistry
Biomedical and Life Sciences
Biomedical materials
Bone marrow
Cardiology
Cbfa-1 protein
Cell Biology
Differentiation (biology)
Homeobox
Life Sciences
Life Sciences & Biomedicine
Medical Biochemistry
Mesenchyme
Neomycin
Non-coding RNA
Oncology
Osteoblastogenesis
Osteoblasts
Osteocalcin
Osteoporosis
Prospero protein
RNA
Science & Technology
Stem cells
title Long non-coding RNA DANCR modulates osteogenic differentiation by regulating the miR-1301-3p/PROX1 axis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20non-coding%20RNA%20DANCR%20modulates%20osteogenic%20differentiation%20by%20regulating%20the%20miR-1301-3p/PROX1%20axis&rft.jtitle=Molecular%20and%20cellular%20biochemistry&rft.au=Weng,%20Wei&rft.date=2021-06-01&rft.volume=476&rft.issue=6&rft.spage=2503&rft.epage=2512&rft.pages=2503-2512&rft.issn=0300-8177&rft.eissn=1573-4919&rft_id=info:doi/10.1007/s11010-021-04074-9&rft_dat=%3Cgale_webof%3EA661806471%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526479213&rft_id=info:pmid/33629241&rft_galeid=A661806471&rfr_iscdi=true