CKLF and IL1B transcript levels at diagnosis are predictive of relapse in children with pre‐B‐cell acute lymphoblastic leukaemia

Summary Disease relapse is the greatest cause of treatment failure in paediatric B‐cell acute lymphoblastic leukaemia (B‐ALL). Current risk stratifications fail to capture all patients at risk of relapse. Herein, we used a machine‐learning approach to identify B‐ALL blast‐secreted factors that are a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of haematology 2021-04, Vol.193 (1), p.171-175
Hauptverfasser: Fitter, Stephen, Bradey, Alanah L., Kok, Chung Hoow, Noll, Jacqueline E., Wilczek, Vicki J., Venn, Nicola C., Law, Tamara, Paisitkriangkrai, Sakrapee, Story, Colin, Saunders, Lynda, Dalla Pozza, Luciano, Marshall, Glenn M., White, Deborah L., Sutton, Rosemary, Zannettino, Andrew C. W., Revesz, Tamas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 1
container_start_page 171
container_title British journal of haematology
container_volume 193
creator Fitter, Stephen
Bradey, Alanah L.
Kok, Chung Hoow
Noll, Jacqueline E.
Wilczek, Vicki J.
Venn, Nicola C.
Law, Tamara
Paisitkriangkrai, Sakrapee
Story, Colin
Saunders, Lynda
Dalla Pozza, Luciano
Marshall, Glenn M.
White, Deborah L.
Sutton, Rosemary
Zannettino, Andrew C. W.
Revesz, Tamas
description Summary Disease relapse is the greatest cause of treatment failure in paediatric B‐cell acute lymphoblastic leukaemia (B‐ALL). Current risk stratifications fail to capture all patients at risk of relapse. Herein, we used a machine‐learning approach to identify B‐ALL blast‐secreted factors that are associated with poor survival outcomes. Using this approach, we identified a two‐gene expression signature (CKLF and IL1B) that allowed identification of high‐risk patients at diagnosis. This two‐gene expression signature enhances the predictive value of current at diagnosis or end‐of‐induction risk stratification suggesting the model can be applied continuously to help guide implementation of risk‐adapted therapies.
doi_str_mv 10.1111/bjh.17161
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2492661729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509280333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-dcbc39ae69c702ebc354dc021bd832f8783be32eb646e8368510e80ca8f43af03</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi1ERZeFAy-ALHEph7RjO3GcI7ui9M9KXOBsOc6E9eL8wU5a7Y0DD8Az8iR42cKhEiONRp_mp29G-gh5xeCcpbqod9tzVjLJnpAFE7LIOMvZU7IAgDJjkKtT8jzGHQATULBn5FQIyQFUtSA_1rebS2r6hl5v2IpOwfTRBjdO1OMd-kjNRBtnvvRDdEkEpGPAxtnJ3SEdWhrQmzEidT21W-ebgD29d9P2gP36_nOV2qL31Nh5Qur33bgdam_i5Gy6MH812Dnzgpy0xkd8-TCX5PPl-0_rq2zz8cP1-t0ms0IpljW2tqIyKCtbAsckiryxwFndKMFbVSpRo0gLmUtUQqqCASqwRrW5MC2IJTk7-o5h-DZjnHTn4uE90-MwR83zikvJSl4l9M0jdDfMoU_faV5AxRWIVEvy9kjZMMQYsNVjcJ0Je81AH6LRKRr9J5rEvn5wnOsOm3_k3ywScHEE7p3H_f-d9Orm6mj5G9X9mf4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509280333</pqid></control><display><type>article</type><title>CKLF and IL1B transcript levels at diagnosis are predictive of relapse in children with pre‐B‐cell acute lymphoblastic leukaemia</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><creator>Fitter, Stephen ; Bradey, Alanah L. ; Kok, Chung Hoow ; Noll, Jacqueline E. ; Wilczek, Vicki J. ; Venn, Nicola C. ; Law, Tamara ; Paisitkriangkrai, Sakrapee ; Story, Colin ; Saunders, Lynda ; Dalla Pozza, Luciano ; Marshall, Glenn M. ; White, Deborah L. ; Sutton, Rosemary ; Zannettino, Andrew C. W. ; Revesz, Tamas</creator><creatorcontrib>Fitter, Stephen ; Bradey, Alanah L. ; Kok, Chung Hoow ; Noll, Jacqueline E. ; Wilczek, Vicki J. ; Venn, Nicola C. ; Law, Tamara ; Paisitkriangkrai, Sakrapee ; Story, Colin ; Saunders, Lynda ; Dalla Pozza, Luciano ; Marshall, Glenn M. ; White, Deborah L. ; Sutton, Rosemary ; Zannettino, Andrew C. W. ; Revesz, Tamas</creatorcontrib><description>Summary Disease relapse is the greatest cause of treatment failure in paediatric B‐cell acute lymphoblastic leukaemia (B‐ALL). Current risk stratifications fail to capture all patients at risk of relapse. Herein, we used a machine‐learning approach to identify B‐ALL blast‐secreted factors that are associated with poor survival outcomes. Using this approach, we identified a two‐gene expression signature (CKLF and IL1B) that allowed identification of high‐risk patients at diagnosis. This two‐gene expression signature enhances the predictive value of current at diagnosis or end‐of‐induction risk stratification suggesting the model can be applied continuously to help guide implementation of risk‐adapted therapies.</description><identifier>ISSN: 0007-1048</identifier><identifier>EISSN: 1365-2141</identifier><identifier>DOI: 10.1111/bjh.17161</identifier><identifier>PMID: 33620089</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Acute lymphoblastic leukemia ; Diagnosis ; Gene expression ; Hematology ; Interleukin 1 ; Learning algorithms ; Leukemia ; Transcription</subject><ispartof>British journal of haematology, 2021-04, Vol.193 (1), p.171-175</ispartof><rights>2021 British Society for Haematology and John Wiley &amp; Sons Ltd</rights><rights>2021 British Society for Haematology and John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2021 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-dcbc39ae69c702ebc354dc021bd832f8783be32eb646e8368510e80ca8f43af03</citedby><cites>FETCH-LOGICAL-c3881-dcbc39ae69c702ebc354dc021bd832f8783be32eb646e8368510e80ca8f43af03</cites><orcidid>0000-0003-1663-6807 ; 0000-0002-6646-6167 ; 0000-0002-3181-7852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbjh.17161$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbjh.17161$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33620089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fitter, Stephen</creatorcontrib><creatorcontrib>Bradey, Alanah L.</creatorcontrib><creatorcontrib>Kok, Chung Hoow</creatorcontrib><creatorcontrib>Noll, Jacqueline E.</creatorcontrib><creatorcontrib>Wilczek, Vicki J.</creatorcontrib><creatorcontrib>Venn, Nicola C.</creatorcontrib><creatorcontrib>Law, Tamara</creatorcontrib><creatorcontrib>Paisitkriangkrai, Sakrapee</creatorcontrib><creatorcontrib>Story, Colin</creatorcontrib><creatorcontrib>Saunders, Lynda</creatorcontrib><creatorcontrib>Dalla Pozza, Luciano</creatorcontrib><creatorcontrib>Marshall, Glenn M.</creatorcontrib><creatorcontrib>White, Deborah L.</creatorcontrib><creatorcontrib>Sutton, Rosemary</creatorcontrib><creatorcontrib>Zannettino, Andrew C. W.</creatorcontrib><creatorcontrib>Revesz, Tamas</creatorcontrib><title>CKLF and IL1B transcript levels at diagnosis are predictive of relapse in children with pre‐B‐cell acute lymphoblastic leukaemia</title><title>British journal of haematology</title><addtitle>Br J Haematol</addtitle><description>Summary Disease relapse is the greatest cause of treatment failure in paediatric B‐cell acute lymphoblastic leukaemia (B‐ALL). Current risk stratifications fail to capture all patients at risk of relapse. Herein, we used a machine‐learning approach to identify B‐ALL blast‐secreted factors that are associated with poor survival outcomes. Using this approach, we identified a two‐gene expression signature (CKLF and IL1B) that allowed identification of high‐risk patients at diagnosis. This two‐gene expression signature enhances the predictive value of current at diagnosis or end‐of‐induction risk stratification suggesting the model can be applied continuously to help guide implementation of risk‐adapted therapies.</description><subject>Acute lymphoblastic leukemia</subject><subject>Diagnosis</subject><subject>Gene expression</subject><subject>Hematology</subject><subject>Interleukin 1</subject><subject>Learning algorithms</subject><subject>Leukemia</subject><subject>Transcription</subject><issn>0007-1048</issn><issn>1365-2141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u1DAQxi1ERZeFAy-ALHEph7RjO3GcI7ui9M9KXOBsOc6E9eL8wU5a7Y0DD8Az8iR42cKhEiONRp_mp29G-gh5xeCcpbqod9tzVjLJnpAFE7LIOMvZU7IAgDJjkKtT8jzGHQATULBn5FQIyQFUtSA_1rebS2r6hl5v2IpOwfTRBjdO1OMd-kjNRBtnvvRDdEkEpGPAxtnJ3SEdWhrQmzEidT21W-ebgD29d9P2gP36_nOV2qL31Nh5Qur33bgdam_i5Gy6MH812Dnzgpy0xkd8-TCX5PPl-0_rq2zz8cP1-t0ms0IpljW2tqIyKCtbAsckiryxwFndKMFbVSpRo0gLmUtUQqqCASqwRrW5MC2IJTk7-o5h-DZjnHTn4uE90-MwR83zikvJSl4l9M0jdDfMoU_faV5AxRWIVEvy9kjZMMQYsNVjcJ0Je81AH6LRKRr9J5rEvn5wnOsOm3_k3ywScHEE7p3H_f-d9Orm6mj5G9X9mf4</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Fitter, Stephen</creator><creator>Bradey, Alanah L.</creator><creator>Kok, Chung Hoow</creator><creator>Noll, Jacqueline E.</creator><creator>Wilczek, Vicki J.</creator><creator>Venn, Nicola C.</creator><creator>Law, Tamara</creator><creator>Paisitkriangkrai, Sakrapee</creator><creator>Story, Colin</creator><creator>Saunders, Lynda</creator><creator>Dalla Pozza, Luciano</creator><creator>Marshall, Glenn M.</creator><creator>White, Deborah L.</creator><creator>Sutton, Rosemary</creator><creator>Zannettino, Andrew C. W.</creator><creator>Revesz, Tamas</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1663-6807</orcidid><orcidid>https://orcid.org/0000-0002-6646-6167</orcidid><orcidid>https://orcid.org/0000-0002-3181-7852</orcidid></search><sort><creationdate>202104</creationdate><title>CKLF and IL1B transcript levels at diagnosis are predictive of relapse in children with pre‐B‐cell acute lymphoblastic leukaemia</title><author>Fitter, Stephen ; Bradey, Alanah L. ; Kok, Chung Hoow ; Noll, Jacqueline E. ; Wilczek, Vicki J. ; Venn, Nicola C. ; Law, Tamara ; Paisitkriangkrai, Sakrapee ; Story, Colin ; Saunders, Lynda ; Dalla Pozza, Luciano ; Marshall, Glenn M. ; White, Deborah L. ; Sutton, Rosemary ; Zannettino, Andrew C. W. ; Revesz, Tamas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-dcbc39ae69c702ebc354dc021bd832f8783be32eb646e8368510e80ca8f43af03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acute lymphoblastic leukemia</topic><topic>Diagnosis</topic><topic>Gene expression</topic><topic>Hematology</topic><topic>Interleukin 1</topic><topic>Learning algorithms</topic><topic>Leukemia</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fitter, Stephen</creatorcontrib><creatorcontrib>Bradey, Alanah L.</creatorcontrib><creatorcontrib>Kok, Chung Hoow</creatorcontrib><creatorcontrib>Noll, Jacqueline E.</creatorcontrib><creatorcontrib>Wilczek, Vicki J.</creatorcontrib><creatorcontrib>Venn, Nicola C.</creatorcontrib><creatorcontrib>Law, Tamara</creatorcontrib><creatorcontrib>Paisitkriangkrai, Sakrapee</creatorcontrib><creatorcontrib>Story, Colin</creatorcontrib><creatorcontrib>Saunders, Lynda</creatorcontrib><creatorcontrib>Dalla Pozza, Luciano</creatorcontrib><creatorcontrib>Marshall, Glenn M.</creatorcontrib><creatorcontrib>White, Deborah L.</creatorcontrib><creatorcontrib>Sutton, Rosemary</creatorcontrib><creatorcontrib>Zannettino, Andrew C. W.</creatorcontrib><creatorcontrib>Revesz, Tamas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of haematology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fitter, Stephen</au><au>Bradey, Alanah L.</au><au>Kok, Chung Hoow</au><au>Noll, Jacqueline E.</au><au>Wilczek, Vicki J.</au><au>Venn, Nicola C.</au><au>Law, Tamara</au><au>Paisitkriangkrai, Sakrapee</au><au>Story, Colin</au><au>Saunders, Lynda</au><au>Dalla Pozza, Luciano</au><au>Marshall, Glenn M.</au><au>White, Deborah L.</au><au>Sutton, Rosemary</au><au>Zannettino, Andrew C. W.</au><au>Revesz, Tamas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CKLF and IL1B transcript levels at diagnosis are predictive of relapse in children with pre‐B‐cell acute lymphoblastic leukaemia</atitle><jtitle>British journal of haematology</jtitle><addtitle>Br J Haematol</addtitle><date>2021-04</date><risdate>2021</risdate><volume>193</volume><issue>1</issue><spage>171</spage><epage>175</epage><pages>171-175</pages><issn>0007-1048</issn><eissn>1365-2141</eissn><abstract>Summary Disease relapse is the greatest cause of treatment failure in paediatric B‐cell acute lymphoblastic leukaemia (B‐ALL). Current risk stratifications fail to capture all patients at risk of relapse. Herein, we used a machine‐learning approach to identify B‐ALL blast‐secreted factors that are associated with poor survival outcomes. Using this approach, we identified a two‐gene expression signature (CKLF and IL1B) that allowed identification of high‐risk patients at diagnosis. This two‐gene expression signature enhances the predictive value of current at diagnosis or end‐of‐induction risk stratification suggesting the model can be applied continuously to help guide implementation of risk‐adapted therapies.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>33620089</pmid><doi>10.1111/bjh.17161</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1663-6807</orcidid><orcidid>https://orcid.org/0000-0002-6646-6167</orcidid><orcidid>https://orcid.org/0000-0002-3181-7852</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1048
ispartof British journal of haematology, 2021-04, Vol.193 (1), p.171-175
issn 0007-1048
1365-2141
language eng
recordid cdi_proquest_miscellaneous_2492661729
source Wiley Online Library Free Content; Access via Wiley Online Library
subjects Acute lymphoblastic leukemia
Diagnosis
Gene expression
Hematology
Interleukin 1
Learning algorithms
Leukemia
Transcription
title CKLF and IL1B transcript levels at diagnosis are predictive of relapse in children with pre‐B‐cell acute lymphoblastic leukaemia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CKLF%20and%20IL1B%20transcript%20levels%20at%20diagnosis%20are%20predictive%20of%20relapse%20in%20children%20with%20pre%E2%80%90B%E2%80%90cell%20acute%20lymphoblastic%20leukaemia&rft.jtitle=British%20journal%20of%20haematology&rft.au=Fitter,%20Stephen&rft.date=2021-04&rft.volume=193&rft.issue=1&rft.spage=171&rft.epage=175&rft.pages=171-175&rft.issn=0007-1048&rft.eissn=1365-2141&rft_id=info:doi/10.1111/bjh.17161&rft_dat=%3Cproquest_cross%3E2509280333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509280333&rft_id=info:pmid/33620089&rfr_iscdi=true