Accuracy of digital complete-arch, multi-implant scans made in the edentulous jaw with gingival movement simulation: An in vitro study

The use of computer-aided design and computer-aided manufacturing (CAD-CAM) technologies is widely established, with single restorations or short fixed partial dentures having similar accuracy when generated from digital scans or conventional impressions. However, research on complete-arch scanning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of prosthetic dentistry 2022-09, Vol.128 (3), p.468-478
Hauptverfasser: Knechtle, Nathalie, Wiedemeier, Daniel, Mehl, Albert, Ender, Andreas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 478
container_issue 3
container_start_page 468
container_title The Journal of prosthetic dentistry
container_volume 128
creator Knechtle, Nathalie
Wiedemeier, Daniel
Mehl, Albert
Ender, Andreas
description The use of computer-aided design and computer-aided manufacturing (CAD-CAM) technologies is widely established, with single restorations or short fixed partial dentures having similar accuracy when generated from digital scans or conventional impressions. However, research on complete-arch scanning of edentulous jaws is sparse. The purpose of this pilot in vitro study was to compare the accuracy of a digital scan with the conventional method in a workflow generating implant-supported complete-arch prostheses and to establish whether interference from flexible soft tissue segments affects accuracy. An edentulous maxillary master cast containing 6 angled implant analogs was used and digitized with mounted scan bodies by using a high-precision laboratory scanner. The master cast was then scanned 10 times with 4 different intraoral scanners: TRIOS 3 with a complete-arch scanning strategy (TRI1) or implant-scanning strategy (TRI2), TRIOS Color (TRC), CEREC Omnicam (CER), and CEREC Primescan (PS). The same procedure was repeated with 4 different levels of free gingiva (G0–G3). Ten conventional impressions were obtained. Differences in implant position and direction were evaluated at the implant shoulder as mean values for trueness and interquartile range (IQR) for precision. Statistical analysis was performed by using the Kruskal–Wallis and post hoc Conover tests (α=.05). At G0, position deviations ranged from 34.8 μm (IQR 23.0 μm) (TRC) to 68.3 μm (12.2 μm) (CER). Direction deviations ranged from 0.34 degrees (IQR 0.18 degrees) (conventional) to 0.57 degrees (IQR 0.37 degrees) (TRI2). For digital systems, the position deviation ranged from 48.4 μm (IQR 5.9 μm) (PS) to 76.6 μm (IQR 8.1 μm) (TRC) at G1, from 36.3 μm (IQR 9.3 μm) (PS) to 79.9 μm (IQR 36.1 μm) (TRI1) at G2, and from 51.8 μm (IQR 14.3 μm) (PS) to 257.5 μm (IQR 106.3 μm) (TRC) at G3. The direction deviation ranged from 0.45 degrees (IQR 0.15 degrees) (CER) to 0.64 degrees (IQR 0.20 degrees) (TRC) at G1, from 0.38 degrees (IQR 0.05 degrees) (PS) to 0.925 degrees (IQR 0.09 degrees) (TRI) at G2, and from 0.44 degrees (IQR 0.07 degrees) (PS) to 1.634 degrees (IQR 1.08 degrees) (TRI) at G3. Statistical analysis revealed significant differences among the test groups for position (G0: P
doi_str_mv 10.1016/j.prosdent.2020.12.037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2492285535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022391321000196</els_id><sourcerecordid>2492285535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-a6887206d635a71b474d8e96cb5415895c87000a51d9f488fb74e8259093a8bd3</originalsourceid><addsrcrecordid>eNqFUcuOEzEQtBCIDQu_sPKRAxP8GHs8nIhWvKSVuMDZ8tg9SUfzCLYnq3wBv7HfwpfhKLtcObXUqqruqiLkhrM1Z1y_368PcU4BprwWTJSlWDPZPCMrztqm0qbmz8mKMSEq2XJ5RV6ltGeMGdXwl-RKSs2FlGpFfm-8X6LzJzr3NOAWsxuon8fDABkqF_3uHR2XIWOFZeemTJN3U6KjC0BxonkHFM5vLMO8JLp39_Qe845ucdrisWiN8xFGOPOw6LiM8_SBbqbC_fNwxBxnmvISTq_Ji94NCd48zmvy8_OnH7dfq7vvX77dbu4qX3OdK6eNaQTTQUvlGt7VTR0MtNp3qubKtMqbpth0ioe2r43pu6YGI1TLWulMF-Q1eXvRLfH9WiBlO2LyMBRrUAxYUbdCGKWkKlB9gfqSdIrQ20PE0cWT5cyeS7B7-1SCPZdgubClhEK8ebyxdCOEf7Sn1Avg4wUAxekRIdrkESYPASP4bMOM_7vxF-lOnmU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492285535</pqid></control><display><type>article</type><title>Accuracy of digital complete-arch, multi-implant scans made in the edentulous jaw with gingival movement simulation: An in vitro study</title><source>Elsevier ScienceDirect Journals</source><creator>Knechtle, Nathalie ; Wiedemeier, Daniel ; Mehl, Albert ; Ender, Andreas</creator><creatorcontrib>Knechtle, Nathalie ; Wiedemeier, Daniel ; Mehl, Albert ; Ender, Andreas</creatorcontrib><description><![CDATA[The use of computer-aided design and computer-aided manufacturing (CAD-CAM) technologies is widely established, with single restorations or short fixed partial dentures having similar accuracy when generated from digital scans or conventional impressions. However, research on complete-arch scanning of edentulous jaws is sparse. The purpose of this pilot in vitro study was to compare the accuracy of a digital scan with the conventional method in a workflow generating implant-supported complete-arch prostheses and to establish whether interference from flexible soft tissue segments affects accuracy. An edentulous maxillary master cast containing 6 angled implant analogs was used and digitized with mounted scan bodies by using a high-precision laboratory scanner. The master cast was then scanned 10 times with 4 different intraoral scanners: TRIOS 3 with a complete-arch scanning strategy (TRI1) or implant-scanning strategy (TRI2), TRIOS Color (TRC), CEREC Omnicam (CER), and CEREC Primescan (PS). The same procedure was repeated with 4 different levels of free gingiva (G0–G3). Ten conventional impressions were obtained. Differences in implant position and direction were evaluated at the implant shoulder as mean values for trueness and interquartile range (IQR) for precision. Statistical analysis was performed by using the Kruskal–Wallis and post hoc Conover tests (α=.05). At G0, position deviations ranged from 34.8 μm (IQR 23.0 μm) (TRC) to 68.3 μm (12.2 μm) (CER). Direction deviations ranged from 0.34 degrees (IQR 0.18 degrees) (conventional) to 0.57 degrees (IQR 0.37 degrees) (TRI2). For digital systems, the position deviation ranged from 48.4 μm (IQR 5.9 μm) (PS) to 76.6 μm (IQR 8.1 μm) (TRC) at G1, from 36.3 μm (IQR 9.3 μm) (PS) to 79.9 μm (IQR 36.1 μm) (TRI1) at G2, and from 51.8 μm (IQR 14.3 μm) (PS) to 257.5 μm (IQR 106.3 μm) (TRC) at G3. The direction deviation ranged from 0.45 degrees (IQR 0.15 degrees) (CER) to 0.64 degrees (IQR 0.20 degrees) (TRC) at G1, from 0.38 degrees (IQR 0.05 degrees) (PS) to 0.925 degrees (IQR 0.09 degrees) (TRI) at G2, and from 0.44 degrees (IQR 0.07 degrees) (PS) to 1.634 degrees (IQR 1.08 degrees) (TRI) at G3. Statistical analysis revealed significant differences among the test groups for position (G0: P<.001; G1: P<.05; G2: P<.001; G3: P<.001) and direction (G0: P<.005; G1: P<.001; G2: P<.001; G3: P<.001). Without soft tissue interference, the accuracy of certain digital scanning systems was comparable with that of the conventional impression technique. The amount of flexible soft tissue interference affected the accuracy of the digital scans.]]></description><identifier>ISSN: 0022-3913</identifier><identifier>EISSN: 1097-6841</identifier><identifier>DOI: 10.1016/j.prosdent.2020.12.037</identifier><identifier>PMID: 33612335</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><ispartof>The Journal of prosthetic dentistry, 2022-09, Vol.128 (3), p.468-478</ispartof><rights>2021 Editorial Council for the Journal of Prosthetic Dentistry</rights><rights>Copyright © 2021 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-a6887206d635a71b474d8e96cb5415895c87000a51d9f488fb74e8259093a8bd3</citedby><cites>FETCH-LOGICAL-c416t-a6887206d635a71b474d8e96cb5415895c87000a51d9f488fb74e8259093a8bd3</cites><orcidid>0000-0003-1254-4796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022391321000196$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33612335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knechtle, Nathalie</creatorcontrib><creatorcontrib>Wiedemeier, Daniel</creatorcontrib><creatorcontrib>Mehl, Albert</creatorcontrib><creatorcontrib>Ender, Andreas</creatorcontrib><title>Accuracy of digital complete-arch, multi-implant scans made in the edentulous jaw with gingival movement simulation: An in vitro study</title><title>The Journal of prosthetic dentistry</title><addtitle>J Prosthet Dent</addtitle><description><![CDATA[The use of computer-aided design and computer-aided manufacturing (CAD-CAM) technologies is widely established, with single restorations or short fixed partial dentures having similar accuracy when generated from digital scans or conventional impressions. However, research on complete-arch scanning of edentulous jaws is sparse. The purpose of this pilot in vitro study was to compare the accuracy of a digital scan with the conventional method in a workflow generating implant-supported complete-arch prostheses and to establish whether interference from flexible soft tissue segments affects accuracy. An edentulous maxillary master cast containing 6 angled implant analogs was used and digitized with mounted scan bodies by using a high-precision laboratory scanner. The master cast was then scanned 10 times with 4 different intraoral scanners: TRIOS 3 with a complete-arch scanning strategy (TRI1) or implant-scanning strategy (TRI2), TRIOS Color (TRC), CEREC Omnicam (CER), and CEREC Primescan (PS). The same procedure was repeated with 4 different levels of free gingiva (G0–G3). Ten conventional impressions were obtained. Differences in implant position and direction were evaluated at the implant shoulder as mean values for trueness and interquartile range (IQR) for precision. Statistical analysis was performed by using the Kruskal–Wallis and post hoc Conover tests (α=.05). At G0, position deviations ranged from 34.8 μm (IQR 23.0 μm) (TRC) to 68.3 μm (12.2 μm) (CER). Direction deviations ranged from 0.34 degrees (IQR 0.18 degrees) (conventional) to 0.57 degrees (IQR 0.37 degrees) (TRI2). For digital systems, the position deviation ranged from 48.4 μm (IQR 5.9 μm) (PS) to 76.6 μm (IQR 8.1 μm) (TRC) at G1, from 36.3 μm (IQR 9.3 μm) (PS) to 79.9 μm (IQR 36.1 μm) (TRI1) at G2, and from 51.8 μm (IQR 14.3 μm) (PS) to 257.5 μm (IQR 106.3 μm) (TRC) at G3. The direction deviation ranged from 0.45 degrees (IQR 0.15 degrees) (CER) to 0.64 degrees (IQR 0.20 degrees) (TRC) at G1, from 0.38 degrees (IQR 0.05 degrees) (PS) to 0.925 degrees (IQR 0.09 degrees) (TRI) at G2, and from 0.44 degrees (IQR 0.07 degrees) (PS) to 1.634 degrees (IQR 1.08 degrees) (TRI) at G3. Statistical analysis revealed significant differences among the test groups for position (G0: P<.001; G1: P<.05; G2: P<.001; G3: P<.001) and direction (G0: P<.005; G1: P<.001; G2: P<.001; G3: P<.001). Without soft tissue interference, the accuracy of certain digital scanning systems was comparable with that of the conventional impression technique. The amount of flexible soft tissue interference affected the accuracy of the digital scans.]]></description><issn>0022-3913</issn><issn>1097-6841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUcuOEzEQtBCIDQu_sPKRAxP8GHs8nIhWvKSVuMDZ8tg9SUfzCLYnq3wBv7HfwpfhKLtcObXUqqruqiLkhrM1Z1y_368PcU4BprwWTJSlWDPZPCMrztqm0qbmz8mKMSEq2XJ5RV6ltGeMGdXwl-RKSs2FlGpFfm-8X6LzJzr3NOAWsxuon8fDABkqF_3uHR2XIWOFZeemTJN3U6KjC0BxonkHFM5vLMO8JLp39_Qe845ucdrisWiN8xFGOPOw6LiM8_SBbqbC_fNwxBxnmvISTq_Ji94NCd48zmvy8_OnH7dfq7vvX77dbu4qX3OdK6eNaQTTQUvlGt7VTR0MtNp3qubKtMqbpth0ioe2r43pu6YGI1TLWulMF-Q1eXvRLfH9WiBlO2LyMBRrUAxYUbdCGKWkKlB9gfqSdIrQ20PE0cWT5cyeS7B7-1SCPZdgubClhEK8ebyxdCOEf7Sn1Avg4wUAxekRIdrkESYPASP4bMOM_7vxF-lOnmU</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Knechtle, Nathalie</creator><creator>Wiedemeier, Daniel</creator><creator>Mehl, Albert</creator><creator>Ender, Andreas</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1254-4796</orcidid></search><sort><creationdate>20220901</creationdate><title>Accuracy of digital complete-arch, multi-implant scans made in the edentulous jaw with gingival movement simulation: An in vitro study</title><author>Knechtle, Nathalie ; Wiedemeier, Daniel ; Mehl, Albert ; Ender, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-a6887206d635a71b474d8e96cb5415895c87000a51d9f488fb74e8259093a8bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knechtle, Nathalie</creatorcontrib><creatorcontrib>Wiedemeier, Daniel</creatorcontrib><creatorcontrib>Mehl, Albert</creatorcontrib><creatorcontrib>Ender, Andreas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of prosthetic dentistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knechtle, Nathalie</au><au>Wiedemeier, Daniel</au><au>Mehl, Albert</au><au>Ender, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accuracy of digital complete-arch, multi-implant scans made in the edentulous jaw with gingival movement simulation: An in vitro study</atitle><jtitle>The Journal of prosthetic dentistry</jtitle><addtitle>J Prosthet Dent</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>128</volume><issue>3</issue><spage>468</spage><epage>478</epage><pages>468-478</pages><issn>0022-3913</issn><eissn>1097-6841</eissn><abstract><![CDATA[The use of computer-aided design and computer-aided manufacturing (CAD-CAM) technologies is widely established, with single restorations or short fixed partial dentures having similar accuracy when generated from digital scans or conventional impressions. However, research on complete-arch scanning of edentulous jaws is sparse. The purpose of this pilot in vitro study was to compare the accuracy of a digital scan with the conventional method in a workflow generating implant-supported complete-arch prostheses and to establish whether interference from flexible soft tissue segments affects accuracy. An edentulous maxillary master cast containing 6 angled implant analogs was used and digitized with mounted scan bodies by using a high-precision laboratory scanner. The master cast was then scanned 10 times with 4 different intraoral scanners: TRIOS 3 with a complete-arch scanning strategy (TRI1) or implant-scanning strategy (TRI2), TRIOS Color (TRC), CEREC Omnicam (CER), and CEREC Primescan (PS). The same procedure was repeated with 4 different levels of free gingiva (G0–G3). Ten conventional impressions were obtained. Differences in implant position and direction were evaluated at the implant shoulder as mean values for trueness and interquartile range (IQR) for precision. Statistical analysis was performed by using the Kruskal–Wallis and post hoc Conover tests (α=.05). At G0, position deviations ranged from 34.8 μm (IQR 23.0 μm) (TRC) to 68.3 μm (12.2 μm) (CER). Direction deviations ranged from 0.34 degrees (IQR 0.18 degrees) (conventional) to 0.57 degrees (IQR 0.37 degrees) (TRI2). For digital systems, the position deviation ranged from 48.4 μm (IQR 5.9 μm) (PS) to 76.6 μm (IQR 8.1 μm) (TRC) at G1, from 36.3 μm (IQR 9.3 μm) (PS) to 79.9 μm (IQR 36.1 μm) (TRI1) at G2, and from 51.8 μm (IQR 14.3 μm) (PS) to 257.5 μm (IQR 106.3 μm) (TRC) at G3. The direction deviation ranged from 0.45 degrees (IQR 0.15 degrees) (CER) to 0.64 degrees (IQR 0.20 degrees) (TRC) at G1, from 0.38 degrees (IQR 0.05 degrees) (PS) to 0.925 degrees (IQR 0.09 degrees) (TRI) at G2, and from 0.44 degrees (IQR 0.07 degrees) (PS) to 1.634 degrees (IQR 1.08 degrees) (TRI) at G3. Statistical analysis revealed significant differences among the test groups for position (G0: P<.001; G1: P<.05; G2: P<.001; G3: P<.001) and direction (G0: P<.005; G1: P<.001; G2: P<.001; G3: P<.001). Without soft tissue interference, the accuracy of certain digital scanning systems was comparable with that of the conventional impression technique. The amount of flexible soft tissue interference affected the accuracy of the digital scans.]]></abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33612335</pmid><doi>10.1016/j.prosdent.2020.12.037</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1254-4796</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3913
ispartof The Journal of prosthetic dentistry, 2022-09, Vol.128 (3), p.468-478
issn 0022-3913
1097-6841
language eng
recordid cdi_proquest_miscellaneous_2492285535
source Elsevier ScienceDirect Journals
title Accuracy of digital complete-arch, multi-implant scans made in the edentulous jaw with gingival movement simulation: An in vitro study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A00%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accuracy%20of%20digital%20complete-arch,%20multi-implant%20scans%20made%20in%20the%20edentulous%20jaw%20with%20gingival%20movement%20simulation:%20An%20in%C2%A0vitro%20study&rft.jtitle=The%20Journal%20of%20prosthetic%20dentistry&rft.au=Knechtle,%20Nathalie&rft.date=2022-09-01&rft.volume=128&rft.issue=3&rft.spage=468&rft.epage=478&rft.pages=468-478&rft.issn=0022-3913&rft.eissn=1097-6841&rft_id=info:doi/10.1016/j.prosdent.2020.12.037&rft_dat=%3Cproquest_cross%3E2492285535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492285535&rft_id=info:pmid/33612335&rft_els_id=S0022391321000196&rfr_iscdi=true