The molecular basis of plant cellulose synthase complex organisation and assembly

The material properties of cellulose are heavily influenced by the organisation of β-1,4-glucan chains into a microfibril. It is likely that the structure of this microfibril is determined by the spatial arrangement of catalytic cellulose synthase (CESA) proteins within the cellulose synthase comple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical Society transactions 2021-02, Vol.49 (1), p.379-391
Hauptverfasser: Wilson, Thomas H, Kumar, Manoj, Turner, Simon R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 1
container_start_page 379
container_title Biochemical Society transactions
container_volume 49
creator Wilson, Thomas H
Kumar, Manoj
Turner, Simon R
description The material properties of cellulose are heavily influenced by the organisation of β-1,4-glucan chains into a microfibril. It is likely that the structure of this microfibril is determined by the spatial arrangement of catalytic cellulose synthase (CESA) proteins within the cellulose synthase complex (CSC). In land plants, CESA proteins form a large complex composed of a hexamer of trimeric lobes termed the rosette. Each rosette synthesises a single microfibril likely composed of 18 glucan chains. In this review, the biochemical events leading to plant CESA protein assembly into the rosette are explored. The protein interfaces responsible for CESA trimerization are formed by regions that define rosette-forming CESA proteins. As a consequence, these regions are absent from the ancestral bacterial cellulose synthases (BcsAs) that do not form rosettes. CSC assembly occurs within the context of the endomembrane system, however the site of CESA assembly into trimers and rosettes is not determined. Both the N-Terminal Domain and Class Specific Region of CESA proteins are intrinsically disordered and contain all of the identified phosphorylation sites, making both regions candidates as sites for protein-protein interactions and inter-lobe interface formation. We propose a sequential assembly model, whereby CESA proteins form stable trimers shortly after native folding, followed by sequential recruitment of lobes into a rosette, possibly assisted by Golgi-localised STELLO proteins. A comprehensive understanding of CESA assembly into the CSC will enable directed engineering of CESA protein spatial arrangements, allowing changes in cellulose crystal packing that alter its material properties.
doi_str_mv 10.1042/BST20200697
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2492280237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492280237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-59f5ecff131126acb5dad967f8b979980265bdcf0cf6ea038edbd9b5d51b44a43</originalsourceid><addsrcrecordid>eNpNkM1LwzAYh4Mobk5P3iVHQapvPpo0Rx1-wUDEeS5JmrhK2symBfff27Epnt738PDw40HonMA1AU5v7t6WFCiAUPIATQmXkBUyp4doCgwgywmVE3SS0icA4YSLYzRhTBAhqJyi1-XK4SYGZ4egO2x0qhOOHq-DbntsXQhDiMnhtGn7lR4fG5t1cN84dh-6rZPu69hi3VZYp-QaEzan6MjrkNzZ_s7Q-8P9cv6ULV4en-e3i8zSQvVZrnzurPeEEUKFtiavdKWE9IVRUqkCqMhNZT1YL5wGVrjKVGqkcmI415zN0OXOu-7i1-BSXzZ12g7WrYtDKilXlI4aJkf0aofaLqbUOV-uu7rR3aYkUG4blv8ajvTFXjyYxlV_7G809gOgCG1e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492280237</pqid></control><display><type>article</type><title>The molecular basis of plant cellulose synthase complex organisation and assembly</title><source>MEDLINE</source><source>Portland Press Electronic Journals</source><creator>Wilson, Thomas H ; Kumar, Manoj ; Turner, Simon R</creator><creatorcontrib>Wilson, Thomas H ; Kumar, Manoj ; Turner, Simon R</creatorcontrib><description>The material properties of cellulose are heavily influenced by the organisation of β-1,4-glucan chains into a microfibril. It is likely that the structure of this microfibril is determined by the spatial arrangement of catalytic cellulose synthase (CESA) proteins within the cellulose synthase complex (CSC). In land plants, CESA proteins form a large complex composed of a hexamer of trimeric lobes termed the rosette. Each rosette synthesises a single microfibril likely composed of 18 glucan chains. In this review, the biochemical events leading to plant CESA protein assembly into the rosette are explored. The protein interfaces responsible for CESA trimerization are formed by regions that define rosette-forming CESA proteins. As a consequence, these regions are absent from the ancestral bacterial cellulose synthases (BcsAs) that do not form rosettes. CSC assembly occurs within the context of the endomembrane system, however the site of CESA assembly into trimers and rosettes is not determined. Both the N-Terminal Domain and Class Specific Region of CESA proteins are intrinsically disordered and contain all of the identified phosphorylation sites, making both regions candidates as sites for protein-protein interactions and inter-lobe interface formation. We propose a sequential assembly model, whereby CESA proteins form stable trimers shortly after native folding, followed by sequential recruitment of lobes into a rosette, possibly assisted by Golgi-localised STELLO proteins. A comprehensive understanding of CESA assembly into the CSC will enable directed engineering of CESA protein spatial arrangements, allowing changes in cellulose crystal packing that alter its material properties.</description><identifier>ISSN: 0300-5127</identifier><identifier>EISSN: 1470-8752</identifier><identifier>DOI: 10.1042/BST20200697</identifier><identifier>PMID: 33616627</identifier><language>eng</language><publisher>England</publisher><subject>Cellulose - metabolism ; Glucosyltransferases - metabolism ; Metabolic Networks and Pathways - genetics ; Multiprotein Complexes - metabolism ; Plants - metabolism ; Protein Multimerization - genetics</subject><ispartof>Biochemical Society transactions, 2021-02, Vol.49 (1), p.379-391</ispartof><rights>2021 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-59f5ecff131126acb5dad967f8b979980265bdcf0cf6ea038edbd9b5d51b44a43</citedby><cites>FETCH-LOGICAL-c289t-59f5ecff131126acb5dad967f8b979980265bdcf0cf6ea038edbd9b5d51b44a43</cites><orcidid>0000-0003-4859-1068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3266,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33616627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Thomas H</creatorcontrib><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Turner, Simon R</creatorcontrib><title>The molecular basis of plant cellulose synthase complex organisation and assembly</title><title>Biochemical Society transactions</title><addtitle>Biochem Soc Trans</addtitle><description>The material properties of cellulose are heavily influenced by the organisation of β-1,4-glucan chains into a microfibril. It is likely that the structure of this microfibril is determined by the spatial arrangement of catalytic cellulose synthase (CESA) proteins within the cellulose synthase complex (CSC). In land plants, CESA proteins form a large complex composed of a hexamer of trimeric lobes termed the rosette. Each rosette synthesises a single microfibril likely composed of 18 glucan chains. In this review, the biochemical events leading to plant CESA protein assembly into the rosette are explored. The protein interfaces responsible for CESA trimerization are formed by regions that define rosette-forming CESA proteins. As a consequence, these regions are absent from the ancestral bacterial cellulose synthases (BcsAs) that do not form rosettes. CSC assembly occurs within the context of the endomembrane system, however the site of CESA assembly into trimers and rosettes is not determined. Both the N-Terminal Domain and Class Specific Region of CESA proteins are intrinsically disordered and contain all of the identified phosphorylation sites, making both regions candidates as sites for protein-protein interactions and inter-lobe interface formation. We propose a sequential assembly model, whereby CESA proteins form stable trimers shortly after native folding, followed by sequential recruitment of lobes into a rosette, possibly assisted by Golgi-localised STELLO proteins. A comprehensive understanding of CESA assembly into the CSC will enable directed engineering of CESA protein spatial arrangements, allowing changes in cellulose crystal packing that alter its material properties.</description><subject>Cellulose - metabolism</subject><subject>Glucosyltransferases - metabolism</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Plants - metabolism</subject><subject>Protein Multimerization - genetics</subject><issn>0300-5127</issn><issn>1470-8752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkM1LwzAYh4Mobk5P3iVHQapvPpo0Rx1-wUDEeS5JmrhK2symBfff27Epnt738PDw40HonMA1AU5v7t6WFCiAUPIATQmXkBUyp4doCgwgywmVE3SS0icA4YSLYzRhTBAhqJyi1-XK4SYGZ4egO2x0qhOOHq-DbntsXQhDiMnhtGn7lR4fG5t1cN84dh-6rZPu69hi3VZYp-QaEzan6MjrkNzZ_s7Q-8P9cv6ULV4en-e3i8zSQvVZrnzurPeEEUKFtiavdKWE9IVRUqkCqMhNZT1YL5wGVrjKVGqkcmI415zN0OXOu-7i1-BSXzZ12g7WrYtDKilXlI4aJkf0aofaLqbUOV-uu7rR3aYkUG4blv8ajvTFXjyYxlV_7G809gOgCG1e</recordid><startdate>20210226</startdate><enddate>20210226</enddate><creator>Wilson, Thomas H</creator><creator>Kumar, Manoj</creator><creator>Turner, Simon R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4859-1068</orcidid></search><sort><creationdate>20210226</creationdate><title>The molecular basis of plant cellulose synthase complex organisation and assembly</title><author>Wilson, Thomas H ; Kumar, Manoj ; Turner, Simon R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-59f5ecff131126acb5dad967f8b979980265bdcf0cf6ea038edbd9b5d51b44a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cellulose - metabolism</topic><topic>Glucosyltransferases - metabolism</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Plants - metabolism</topic><topic>Protein Multimerization - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Thomas H</creatorcontrib><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Turner, Simon R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical Society transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Thomas H</au><au>Kumar, Manoj</au><au>Turner, Simon R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The molecular basis of plant cellulose synthase complex organisation and assembly</atitle><jtitle>Biochemical Society transactions</jtitle><addtitle>Biochem Soc Trans</addtitle><date>2021-02-26</date><risdate>2021</risdate><volume>49</volume><issue>1</issue><spage>379</spage><epage>391</epage><pages>379-391</pages><issn>0300-5127</issn><eissn>1470-8752</eissn><abstract>The material properties of cellulose are heavily influenced by the organisation of β-1,4-glucan chains into a microfibril. It is likely that the structure of this microfibril is determined by the spatial arrangement of catalytic cellulose synthase (CESA) proteins within the cellulose synthase complex (CSC). In land plants, CESA proteins form a large complex composed of a hexamer of trimeric lobes termed the rosette. Each rosette synthesises a single microfibril likely composed of 18 glucan chains. In this review, the biochemical events leading to plant CESA protein assembly into the rosette are explored. The protein interfaces responsible for CESA trimerization are formed by regions that define rosette-forming CESA proteins. As a consequence, these regions are absent from the ancestral bacterial cellulose synthases (BcsAs) that do not form rosettes. CSC assembly occurs within the context of the endomembrane system, however the site of CESA assembly into trimers and rosettes is not determined. Both the N-Terminal Domain and Class Specific Region of CESA proteins are intrinsically disordered and contain all of the identified phosphorylation sites, making both regions candidates as sites for protein-protein interactions and inter-lobe interface formation. We propose a sequential assembly model, whereby CESA proteins form stable trimers shortly after native folding, followed by sequential recruitment of lobes into a rosette, possibly assisted by Golgi-localised STELLO proteins. A comprehensive understanding of CESA assembly into the CSC will enable directed engineering of CESA protein spatial arrangements, allowing changes in cellulose crystal packing that alter its material properties.</abstract><cop>England</cop><pmid>33616627</pmid><doi>10.1042/BST20200697</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4859-1068</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0300-5127
ispartof Biochemical Society transactions, 2021-02, Vol.49 (1), p.379-391
issn 0300-5127
1470-8752
language eng
recordid cdi_proquest_miscellaneous_2492280237
source MEDLINE; Portland Press Electronic Journals
subjects Cellulose - metabolism
Glucosyltransferases - metabolism
Metabolic Networks and Pathways - genetics
Multiprotein Complexes - metabolism
Plants - metabolism
Protein Multimerization - genetics
title The molecular basis of plant cellulose synthase complex organisation and assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20molecular%20basis%20of%20plant%20cellulose%20synthase%20complex%20organisation%20and%20assembly&rft.jtitle=Biochemical%20Society%20transactions&rft.au=Wilson,%20Thomas%20H&rft.date=2021-02-26&rft.volume=49&rft.issue=1&rft.spage=379&rft.epage=391&rft.pages=379-391&rft.issn=0300-5127&rft.eissn=1470-8752&rft_id=info:doi/10.1042/BST20200697&rft_dat=%3Cproquest_cross%3E2492280237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492280237&rft_id=info:pmid/33616627&rfr_iscdi=true