Neural network learning controller for manipulators

The adaptive learning control of robotic systems is a very important and challenging research problem. The objective of this paper is to design a learning controller for robots based on the biological model of the cerebellum for voluntary movement. In general, two neural network blocks are required...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 1988-01, Vol.1 (suppl.), p.356-356
Hauptverfasser: Pourboghrat, F, Sayeh, M R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue suppl.
container_start_page 356
container_title Neural networks
container_volume 1
creator Pourboghrat, F
Sayeh, M R
description The adaptive learning control of robotic systems is a very important and challenging research problem. The objective of this paper is to design a learning controller for robots based on the biological model of the cerebellum for voluntary movement. In general, two neural network blocks are required in the design, to be in accord with the brain model. One network block is in the feedforward part of the controller which acquires the model of the inverse-dynamics of the robot. The other network block is in the feedback part of the controller which performs as an adaptive state feedback to compensate for the perturbations.
doi_str_mv 10.1016/0893-6080(88)90384-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24922459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24922459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c144t-3a1577414c66a734490b1fe999bb0b18000125775ad2014a7e3a4807397e5bb33</originalsourceid><addsrcrecordid>eNo9kEFLxDAQhXNQcF39Bx56Ej1UJ820SY6y6CoselHYW0jrVKppUpMW8d_bdcXTPIaPx3uPsTMOVxx4dQ1Ki7wCBRdKXWoQCvPtAVv8v4_YcUrvAFApFAsmHmmK1mWexq8QPzJHNvrOv2VN8GMMzlHM2hCz3vpumJwdQ0wn7LC1LtHp312yl7vb59V9vnlaP6xuNnnDEcdcWF5KiRybqrJSIGqoeUta67qelZoz8GImSvtaAEcrSVhUIIWWVNa1EEt2vvcdYvicKI2m71JDzllPYUqmQF0UWOoZxD3YxJBSpNYMsett_DYczG4Vs6tvdvWNUuZ3FbMVP0xPVlE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24922459</pqid></control><display><type>article</type><title>Neural network learning controller for manipulators</title><source>Access via ScienceDirect (Elsevier)</source><creator>Pourboghrat, F ; Sayeh, M R</creator><creatorcontrib>Pourboghrat, F ; Sayeh, M R</creatorcontrib><description>The adaptive learning control of robotic systems is a very important and challenging research problem. The objective of this paper is to design a learning controller for robots based on the biological model of the cerebellum for voluntary movement. In general, two neural network blocks are required in the design, to be in accord with the brain model. One network block is in the feedforward part of the controller which acquires the model of the inverse-dynamics of the robot. The other network block is in the feedback part of the controller which performs as an adaptive state feedback to compensate for the perturbations.</description><identifier>ISSN: 0893-6080</identifier><identifier>DOI: 10.1016/0893-6080(88)90384-X</identifier><language>eng</language><ispartof>Neural networks, 1988-01, Vol.1 (suppl.), p.356-356</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pourboghrat, F</creatorcontrib><creatorcontrib>Sayeh, M R</creatorcontrib><title>Neural network learning controller for manipulators</title><title>Neural networks</title><description>The adaptive learning control of robotic systems is a very important and challenging research problem. The objective of this paper is to design a learning controller for robots based on the biological model of the cerebellum for voluntary movement. In general, two neural network blocks are required in the design, to be in accord with the brain model. One network block is in the feedforward part of the controller which acquires the model of the inverse-dynamics of the robot. The other network block is in the feedback part of the controller which performs as an adaptive state feedback to compensate for the perturbations.</description><issn>0893-6080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLxDAQhXNQcF39Bx56Ej1UJ820SY6y6CoselHYW0jrVKppUpMW8d_bdcXTPIaPx3uPsTMOVxx4dQ1Ki7wCBRdKXWoQCvPtAVv8v4_YcUrvAFApFAsmHmmK1mWexq8QPzJHNvrOv2VN8GMMzlHM2hCz3vpumJwdQ0wn7LC1LtHp312yl7vb59V9vnlaP6xuNnnDEcdcWF5KiRybqrJSIGqoeUta67qelZoz8GImSvtaAEcrSVhUIIWWVNa1EEt2vvcdYvicKI2m71JDzllPYUqmQF0UWOoZxD3YxJBSpNYMsett_DYczG4Vs6tvdvWNUuZ3FbMVP0xPVlE</recordid><startdate>198801</startdate><enddate>198801</enddate><creator>Pourboghrat, F</creator><creator>Sayeh, M R</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>198801</creationdate><title>Neural network learning controller for manipulators</title><author>Pourboghrat, F ; Sayeh, M R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c144t-3a1577414c66a734490b1fe999bb0b18000125775ad2014a7e3a4807397e5bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pourboghrat, F</creatorcontrib><creatorcontrib>Sayeh, M R</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pourboghrat, F</au><au>Sayeh, M R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network learning controller for manipulators</atitle><jtitle>Neural networks</jtitle><date>1988-01</date><risdate>1988</risdate><volume>1</volume><issue>suppl.</issue><spage>356</spage><epage>356</epage><pages>356-356</pages><issn>0893-6080</issn><abstract>The adaptive learning control of robotic systems is a very important and challenging research problem. The objective of this paper is to design a learning controller for robots based on the biological model of the cerebellum for voluntary movement. In general, two neural network blocks are required in the design, to be in accord with the brain model. One network block is in the feedforward part of the controller which acquires the model of the inverse-dynamics of the robot. The other network block is in the feedback part of the controller which performs as an adaptive state feedback to compensate for the perturbations.</abstract><doi>10.1016/0893-6080(88)90384-X</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 1988-01, Vol.1 (suppl.), p.356-356
issn 0893-6080
language eng
recordid cdi_proquest_miscellaneous_24922459
source Access via ScienceDirect (Elsevier)
title Neural network learning controller for manipulators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20learning%20controller%20for%20manipulators&rft.jtitle=Neural%20networks&rft.au=Pourboghrat,%20F&rft.date=1988-01&rft.volume=1&rft.issue=suppl.&rft.spage=356&rft.epage=356&rft.pages=356-356&rft.issn=0893-6080&rft_id=info:doi/10.1016/0893-6080(88)90384-X&rft_dat=%3Cproquest_cross%3E24922459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24922459&rft_id=info:pmid/&rfr_iscdi=true