Mechanism of action of a diterpene alkaloid hypaconitine on cytotoxicity and inhibitory effect of BAPTA‐AM in HCN‐2 neuronal cells
Hypaconitine, a neuromuscular blocker, is a diterpene alkaloid found in the root of Aconitum carmichaelii. Although hypaconitine was shown to affect various physiological responses in neurological models, the effect of hypaconitine on cell viability and the mechanism of its action of Ca2+ handling i...
Gespeichert in:
Veröffentlicht in: | Clinical and experimental pharmacology & physiology 2021-05, Vol.48 (5), p.801-810 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 810 |
---|---|
container_issue | 5 |
container_start_page | 801 |
container_title | Clinical and experimental pharmacology & physiology |
container_volume | 48 |
creator | Hsu, Shu‐Shong Lin, Yung‐Shang Liang, Wei‐Zhe |
description | Hypaconitine, a neuromuscular blocker, is a diterpene alkaloid found in the root of Aconitum carmichaelii. Although hypaconitine was shown to affect various physiological responses in neurological models, the effect of hypaconitine on cell viability and the mechanism of its action of Ca2+ handling is elusive in cortical neurons. This study examined whether hypaconitine altered viability and Ca2+ signalling in HCN‐2 neuronal cell lines. Cell viability was measured by the cell proliferation reagent (WST‐1). Cytosolic Ca2+ concentrations [Ca2+]i was measured by the Ca2+‐sensitive fluorescent dye fura‐2. In HCN‐2 cells, hypaconitine (10–50 μmol/L) induced cytotoxicity and [Ca2+]i rises in a concentration‐dependent manner. Removal of extracellular Ca2+ partially reduced the hypaconitine's effect on [Ca2+]i rises. Furthermore, chelation of cytosolic Ca2+ with BAPTA‐AM reduced hypaconitine's cytotoxicity. In Ca2+‐containing medium, hypaconitine‐induced Ca2+ entry was inhibited by modulators (2‐APB and SKF96365) of store‐operated Ca2+ channels and a protein kinase C (PKC) inhibitor (GF109203X). Hypaconitine induced Mn2+ influx indirectly suggesting that hypaconitine evoked Ca2+ entry. In Ca2+‐free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished hypaconitine‐induced [Ca2+]i rises. Conversely, treatment with hypaconitine inhibited thapsigargin‐induced [Ca2+]i rises. However, inhibition of phospholipase C (PLC) with U73122 did not inhibit hypaconitine‐induced [Ca2+]i rises. Together, hypaconitine caused cytotoxicity that was linked to preceding [Ca2+]i rises by Ca2+ influx via store‐operated Ca2+ entry involved PKC regulation and evoking PLC‐independent Ca2+ release from the endoplasmic reticulum. Because BAPTA‐AM loading only partially reversed hypaconitine‐induced cell death, it suggests that hypaconitine induced a second Ca2+‐independent cytotoxicity in HCN‐2 cells. |
doi_str_mv | 10.1111/1440-1681.13482 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2491946727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509223350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3712-afa4e1f7f0142bc8493ace32f82ba83038613d29de031f539e6e295adc8837c63</originalsourceid><addsrcrecordid>eNqFkT1PHDEQhq0oKByQmi6ylIZmwR_74S0vJz4iQaAgteXzjnWGPftie5VsR0XNb-SXxMsBRZpM49H4mUcjvQgdUnJMc53QsiQFrQU9prwU7AOavU8-ohnhpCqoaMgu2ovxjhBSkZp_Qruc16QlVT1Dj1egV8rZuMbeYKWT9e6lw51NEDbgAKv-XvXedng1bpT2ziabp5nTY_LJ_7HaphEr12HrVnZpkw8jBmNAp0n1bX5zO39-eJpf5X98sfiRe4YdDME71WMNfR8P0I5RfYTPr-8--nl2eru4KC6vz78v5peF5g1lhTKqBGoaQ2jJllqULVcaODOCLZXghIua8o61HRBOTcVbqIG1leq0ELzRNd9HR1vvJvhfA8Qk1zZOFygHfoiSlS1ty7phTUa__oPe-SHkizNVkZYxziuSqZMtpYOPMYCRm2DXKoySEjlFJKdA5BSIfIkob3x59Q7LNXTv_FsmGai2wG_bw_g_n1yc3mzFfwHN3pwe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509223350</pqid></control><display><type>article</type><title>Mechanism of action of a diterpene alkaloid hypaconitine on cytotoxicity and inhibitory effect of BAPTA‐AM in HCN‐2 neuronal cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hsu, Shu‐Shong ; Lin, Yung‐Shang ; Liang, Wei‐Zhe</creator><creatorcontrib>Hsu, Shu‐Shong ; Lin, Yung‐Shang ; Liang, Wei‐Zhe</creatorcontrib><description>Hypaconitine, a neuromuscular blocker, is a diterpene alkaloid found in the root of Aconitum carmichaelii. Although hypaconitine was shown to affect various physiological responses in neurological models, the effect of hypaconitine on cell viability and the mechanism of its action of Ca2+ handling is elusive in cortical neurons. This study examined whether hypaconitine altered viability and Ca2+ signalling in HCN‐2 neuronal cell lines. Cell viability was measured by the cell proliferation reagent (WST‐1). Cytosolic Ca2+ concentrations [Ca2+]i was measured by the Ca2+‐sensitive fluorescent dye fura‐2. In HCN‐2 cells, hypaconitine (10–50 μmol/L) induced cytotoxicity and [Ca2+]i rises in a concentration‐dependent manner. Removal of extracellular Ca2+ partially reduced the hypaconitine's effect on [Ca2+]i rises. Furthermore, chelation of cytosolic Ca2+ with BAPTA‐AM reduced hypaconitine's cytotoxicity. In Ca2+‐containing medium, hypaconitine‐induced Ca2+ entry was inhibited by modulators (2‐APB and SKF96365) of store‐operated Ca2+ channels and a protein kinase C (PKC) inhibitor (GF109203X). Hypaconitine induced Mn2+ influx indirectly suggesting that hypaconitine evoked Ca2+ entry. In Ca2+‐free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished hypaconitine‐induced [Ca2+]i rises. Conversely, treatment with hypaconitine inhibited thapsigargin‐induced [Ca2+]i rises. However, inhibition of phospholipase C (PLC) with U73122 did not inhibit hypaconitine‐induced [Ca2+]i rises. Together, hypaconitine caused cytotoxicity that was linked to preceding [Ca2+]i rises by Ca2+ influx via store‐operated Ca2+ entry involved PKC regulation and evoking PLC‐independent Ca2+ release from the endoplasmic reticulum. Because BAPTA‐AM loading only partially reversed hypaconitine‐induced cell death, it suggests that hypaconitine induced a second Ca2+‐independent cytotoxicity in HCN‐2 cells.</description><identifier>ISSN: 0305-1870</identifier><identifier>ISSN: 1440-1681</identifier><identifier>EISSN: 1440-1681</identifier><identifier>DOI: 10.1111/1440-1681.13482</identifier><identifier>PMID: 33609056</identifier><language>eng</language><publisher>Australia: Wiley Subscription Services, Inc</publisher><subject>Aconitine - analogs & derivatives ; Aconitine - pharmacology ; Alkaloids ; BAPTA‐AM ; Ca2+ handling ; Ca2+-transporting ATPase ; Calcium (extracellular) ; Calcium (intracellular) ; Calcium (reticular) ; Calcium - metabolism ; Calcium channels ; Calcium Chelating Agents - pharmacology ; Calcium influx ; Calcium ions ; Calcium Signaling - drug effects ; Calcium signalling ; Cell death ; Cell Line ; Cell lines ; Cell proliferation ; Cell Survival - drug effects ; Cell viability ; Chelation ; Cytotoxicity ; Diterpenes ; Diterpenes - pharmacology ; Egtazic Acid - analogs & derivatives ; Egtazic Acid - pharmacology ; Endoplasmic reticulum ; Enzyme inhibitors ; Fluorescent dyes ; Fluorescent indicators ; HCN‐2 cells ; Humans ; hypaconitine ; Kinases ; Modulators ; Neuromodulation ; Neurons - drug effects ; Neurons - metabolism ; Phospholipase C ; Physiological effects ; Physiological responses ; Protein kinase C ; Reagents ; store‐operated Ca2+ entry ; Thapsigargin ; Toxicity</subject><ispartof>Clinical and experimental pharmacology & physiology, 2021-05, Vol.48 (5), p.801-810</ispartof><rights>2021 John Wiley & Sons Australia, Ltd</rights><rights>2021 John Wiley & Sons Australia, Ltd.</rights><rights>Copyright © 2021 John Wiley & Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3712-afa4e1f7f0142bc8493ace32f82ba83038613d29de031f539e6e295adc8837c63</citedby><cites>FETCH-LOGICAL-c3712-afa4e1f7f0142bc8493ace32f82ba83038613d29de031f539e6e295adc8837c63</cites><orcidid>0000-0001-7131-6377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1440-1681.13482$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1440-1681.13482$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33609056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsu, Shu‐Shong</creatorcontrib><creatorcontrib>Lin, Yung‐Shang</creatorcontrib><creatorcontrib>Liang, Wei‐Zhe</creatorcontrib><title>Mechanism of action of a diterpene alkaloid hypaconitine on cytotoxicity and inhibitory effect of BAPTA‐AM in HCN‐2 neuronal cells</title><title>Clinical and experimental pharmacology & physiology</title><addtitle>Clin Exp Pharmacol Physiol</addtitle><description>Hypaconitine, a neuromuscular blocker, is a diterpene alkaloid found in the root of Aconitum carmichaelii. Although hypaconitine was shown to affect various physiological responses in neurological models, the effect of hypaconitine on cell viability and the mechanism of its action of Ca2+ handling is elusive in cortical neurons. This study examined whether hypaconitine altered viability and Ca2+ signalling in HCN‐2 neuronal cell lines. Cell viability was measured by the cell proliferation reagent (WST‐1). Cytosolic Ca2+ concentrations [Ca2+]i was measured by the Ca2+‐sensitive fluorescent dye fura‐2. In HCN‐2 cells, hypaconitine (10–50 μmol/L) induced cytotoxicity and [Ca2+]i rises in a concentration‐dependent manner. Removal of extracellular Ca2+ partially reduced the hypaconitine's effect on [Ca2+]i rises. Furthermore, chelation of cytosolic Ca2+ with BAPTA‐AM reduced hypaconitine's cytotoxicity. In Ca2+‐containing medium, hypaconitine‐induced Ca2+ entry was inhibited by modulators (2‐APB and SKF96365) of store‐operated Ca2+ channels and a protein kinase C (PKC) inhibitor (GF109203X). Hypaconitine induced Mn2+ influx indirectly suggesting that hypaconitine evoked Ca2+ entry. In Ca2+‐free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished hypaconitine‐induced [Ca2+]i rises. Conversely, treatment with hypaconitine inhibited thapsigargin‐induced [Ca2+]i rises. However, inhibition of phospholipase C (PLC) with U73122 did not inhibit hypaconitine‐induced [Ca2+]i rises. Together, hypaconitine caused cytotoxicity that was linked to preceding [Ca2+]i rises by Ca2+ influx via store‐operated Ca2+ entry involved PKC regulation and evoking PLC‐independent Ca2+ release from the endoplasmic reticulum. Because BAPTA‐AM loading only partially reversed hypaconitine‐induced cell death, it suggests that hypaconitine induced a second Ca2+‐independent cytotoxicity in HCN‐2 cells.</description><subject>Aconitine - analogs & derivatives</subject><subject>Aconitine - pharmacology</subject><subject>Alkaloids</subject><subject>BAPTA‐AM</subject><subject>Ca2+ handling</subject><subject>Ca2+-transporting ATPase</subject><subject>Calcium (extracellular)</subject><subject>Calcium (intracellular)</subject><subject>Calcium (reticular)</subject><subject>Calcium - metabolism</subject><subject>Calcium channels</subject><subject>Calcium Chelating Agents - pharmacology</subject><subject>Calcium influx</subject><subject>Calcium ions</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium signalling</subject><subject>Cell death</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Cell proliferation</subject><subject>Cell Survival - drug effects</subject><subject>Cell viability</subject><subject>Chelation</subject><subject>Cytotoxicity</subject><subject>Diterpenes</subject><subject>Diterpenes - pharmacology</subject><subject>Egtazic Acid - analogs & derivatives</subject><subject>Egtazic Acid - pharmacology</subject><subject>Endoplasmic reticulum</subject><subject>Enzyme inhibitors</subject><subject>Fluorescent dyes</subject><subject>Fluorescent indicators</subject><subject>HCN‐2 cells</subject><subject>Humans</subject><subject>hypaconitine</subject><subject>Kinases</subject><subject>Modulators</subject><subject>Neuromodulation</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Phospholipase C</subject><subject>Physiological effects</subject><subject>Physiological responses</subject><subject>Protein kinase C</subject><subject>Reagents</subject><subject>store‐operated Ca2+ entry</subject><subject>Thapsigargin</subject><subject>Toxicity</subject><issn>0305-1870</issn><issn>1440-1681</issn><issn>1440-1681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkT1PHDEQhq0oKByQmi6ylIZmwR_74S0vJz4iQaAgteXzjnWGPftie5VsR0XNb-SXxMsBRZpM49H4mUcjvQgdUnJMc53QsiQFrQU9prwU7AOavU8-ohnhpCqoaMgu2ovxjhBSkZp_Qruc16QlVT1Dj1egV8rZuMbeYKWT9e6lw51NEDbgAKv-XvXedng1bpT2ziabp5nTY_LJ_7HaphEr12HrVnZpkw8jBmNAp0n1bX5zO39-eJpf5X98sfiRe4YdDME71WMNfR8P0I5RfYTPr-8--nl2eru4KC6vz78v5peF5g1lhTKqBGoaQ2jJllqULVcaODOCLZXghIua8o61HRBOTcVbqIG1leq0ELzRNd9HR1vvJvhfA8Qk1zZOFygHfoiSlS1ty7phTUa__oPe-SHkizNVkZYxziuSqZMtpYOPMYCRm2DXKoySEjlFJKdA5BSIfIkob3x59Q7LNXTv_FsmGai2wG_bw_g_n1yc3mzFfwHN3pwe</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Hsu, Shu‐Shong</creator><creator>Lin, Yung‐Shang</creator><creator>Liang, Wei‐Zhe</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7131-6377</orcidid></search><sort><creationdate>202105</creationdate><title>Mechanism of action of a diterpene alkaloid hypaconitine on cytotoxicity and inhibitory effect of BAPTA‐AM in HCN‐2 neuronal cells</title><author>Hsu, Shu‐Shong ; Lin, Yung‐Shang ; Liang, Wei‐Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3712-afa4e1f7f0142bc8493ace32f82ba83038613d29de031f539e6e295adc8837c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aconitine - analogs & derivatives</topic><topic>Aconitine - pharmacology</topic><topic>Alkaloids</topic><topic>BAPTA‐AM</topic><topic>Ca2+ handling</topic><topic>Ca2+-transporting ATPase</topic><topic>Calcium (extracellular)</topic><topic>Calcium (intracellular)</topic><topic>Calcium (reticular)</topic><topic>Calcium - metabolism</topic><topic>Calcium channels</topic><topic>Calcium Chelating Agents - pharmacology</topic><topic>Calcium influx</topic><topic>Calcium ions</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium signalling</topic><topic>Cell death</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Cell proliferation</topic><topic>Cell Survival - drug effects</topic><topic>Cell viability</topic><topic>Chelation</topic><topic>Cytotoxicity</topic><topic>Diterpenes</topic><topic>Diterpenes - pharmacology</topic><topic>Egtazic Acid - analogs & derivatives</topic><topic>Egtazic Acid - pharmacology</topic><topic>Endoplasmic reticulum</topic><topic>Enzyme inhibitors</topic><topic>Fluorescent dyes</topic><topic>Fluorescent indicators</topic><topic>HCN‐2 cells</topic><topic>Humans</topic><topic>hypaconitine</topic><topic>Kinases</topic><topic>Modulators</topic><topic>Neuromodulation</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Phospholipase C</topic><topic>Physiological effects</topic><topic>Physiological responses</topic><topic>Protein kinase C</topic><topic>Reagents</topic><topic>store‐operated Ca2+ entry</topic><topic>Thapsigargin</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Shu‐Shong</creatorcontrib><creatorcontrib>Lin, Yung‐Shang</creatorcontrib><creatorcontrib>Liang, Wei‐Zhe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical and experimental pharmacology & physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Shu‐Shong</au><au>Lin, Yung‐Shang</au><au>Liang, Wei‐Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of action of a diterpene alkaloid hypaconitine on cytotoxicity and inhibitory effect of BAPTA‐AM in HCN‐2 neuronal cells</atitle><jtitle>Clinical and experimental pharmacology & physiology</jtitle><addtitle>Clin Exp Pharmacol Physiol</addtitle><date>2021-05</date><risdate>2021</risdate><volume>48</volume><issue>5</issue><spage>801</spage><epage>810</epage><pages>801-810</pages><issn>0305-1870</issn><issn>1440-1681</issn><eissn>1440-1681</eissn><abstract>Hypaconitine, a neuromuscular blocker, is a diterpene alkaloid found in the root of Aconitum carmichaelii. Although hypaconitine was shown to affect various physiological responses in neurological models, the effect of hypaconitine on cell viability and the mechanism of its action of Ca2+ handling is elusive in cortical neurons. This study examined whether hypaconitine altered viability and Ca2+ signalling in HCN‐2 neuronal cell lines. Cell viability was measured by the cell proliferation reagent (WST‐1). Cytosolic Ca2+ concentrations [Ca2+]i was measured by the Ca2+‐sensitive fluorescent dye fura‐2. In HCN‐2 cells, hypaconitine (10–50 μmol/L) induced cytotoxicity and [Ca2+]i rises in a concentration‐dependent manner. Removal of extracellular Ca2+ partially reduced the hypaconitine's effect on [Ca2+]i rises. Furthermore, chelation of cytosolic Ca2+ with BAPTA‐AM reduced hypaconitine's cytotoxicity. In Ca2+‐containing medium, hypaconitine‐induced Ca2+ entry was inhibited by modulators (2‐APB and SKF96365) of store‐operated Ca2+ channels and a protein kinase C (PKC) inhibitor (GF109203X). Hypaconitine induced Mn2+ influx indirectly suggesting that hypaconitine evoked Ca2+ entry. In Ca2+‐free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished hypaconitine‐induced [Ca2+]i rises. Conversely, treatment with hypaconitine inhibited thapsigargin‐induced [Ca2+]i rises. However, inhibition of phospholipase C (PLC) with U73122 did not inhibit hypaconitine‐induced [Ca2+]i rises. Together, hypaconitine caused cytotoxicity that was linked to preceding [Ca2+]i rises by Ca2+ influx via store‐operated Ca2+ entry involved PKC regulation and evoking PLC‐independent Ca2+ release from the endoplasmic reticulum. Because BAPTA‐AM loading only partially reversed hypaconitine‐induced cell death, it suggests that hypaconitine induced a second Ca2+‐independent cytotoxicity in HCN‐2 cells.</abstract><cop>Australia</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33609056</pmid><doi>10.1111/1440-1681.13482</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7131-6377</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1870 |
ispartof | Clinical and experimental pharmacology & physiology, 2021-05, Vol.48 (5), p.801-810 |
issn | 0305-1870 1440-1681 1440-1681 |
language | eng |
recordid | cdi_proquest_miscellaneous_2491946727 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Aconitine - analogs & derivatives Aconitine - pharmacology Alkaloids BAPTA‐AM Ca2+ handling Ca2+-transporting ATPase Calcium (extracellular) Calcium (intracellular) Calcium (reticular) Calcium - metabolism Calcium channels Calcium Chelating Agents - pharmacology Calcium influx Calcium ions Calcium Signaling - drug effects Calcium signalling Cell death Cell Line Cell lines Cell proliferation Cell Survival - drug effects Cell viability Chelation Cytotoxicity Diterpenes Diterpenes - pharmacology Egtazic Acid - analogs & derivatives Egtazic Acid - pharmacology Endoplasmic reticulum Enzyme inhibitors Fluorescent dyes Fluorescent indicators HCN‐2 cells Humans hypaconitine Kinases Modulators Neuromodulation Neurons - drug effects Neurons - metabolism Phospholipase C Physiological effects Physiological responses Protein kinase C Reagents store‐operated Ca2+ entry Thapsigargin Toxicity |
title | Mechanism of action of a diterpene alkaloid hypaconitine on cytotoxicity and inhibitory effect of BAPTA‐AM in HCN‐2 neuronal cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A05%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20action%20of%20a%20diterpene%20alkaloid%20hypaconitine%20on%20cytotoxicity%20and%20inhibitory%20effect%20of%20BAPTA%E2%80%90AM%20in%20HCN%E2%80%902%20neuronal%20cells&rft.jtitle=Clinical%20and%20experimental%20pharmacology%20&%20physiology&rft.au=Hsu,%20Shu%E2%80%90Shong&rft.date=2021-05&rft.volume=48&rft.issue=5&rft.spage=801&rft.epage=810&rft.pages=801-810&rft.issn=0305-1870&rft.eissn=1440-1681&rft_id=info:doi/10.1111/1440-1681.13482&rft_dat=%3Cproquest_cross%3E2509223350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509223350&rft_id=info:pmid/33609056&rfr_iscdi=true |