Mechanism of action of a diterpene alkaloid hypaconitine on cytotoxicity and inhibitory effect of BAPTA‐AM in HCN‐2 neuronal cells

Hypaconitine, a neuromuscular blocker, is a diterpene alkaloid found in the root of Aconitum carmichaelii. Although hypaconitine was shown to affect various physiological responses in neurological models, the effect of hypaconitine on cell viability and the mechanism of its action of Ca2+ handling i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical and experimental pharmacology & physiology 2021-05, Vol.48 (5), p.801-810
Hauptverfasser: Hsu, Shu‐Shong, Lin, Yung‐Shang, Liang, Wei‐Zhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 810
container_issue 5
container_start_page 801
container_title Clinical and experimental pharmacology & physiology
container_volume 48
creator Hsu, Shu‐Shong
Lin, Yung‐Shang
Liang, Wei‐Zhe
description Hypaconitine, a neuromuscular blocker, is a diterpene alkaloid found in the root of Aconitum carmichaelii. Although hypaconitine was shown to affect various physiological responses in neurological models, the effect of hypaconitine on cell viability and the mechanism of its action of Ca2+ handling is elusive in cortical neurons. This study examined whether hypaconitine altered viability and Ca2+ signalling in HCN‐2 neuronal cell lines. Cell viability was measured by the cell proliferation reagent (WST‐1). Cytosolic Ca2+ concentrations [Ca2+]i was measured by the Ca2+‐sensitive fluorescent dye fura‐2. In HCN‐2 cells, hypaconitine (10–50 μmol/L) induced cytotoxicity and [Ca2+]i rises in a concentration‐dependent manner. Removal of extracellular Ca2+ partially reduced the hypaconitine's effect on [Ca2+]i rises. Furthermore, chelation of cytosolic Ca2+ with BAPTA‐AM reduced hypaconitine's cytotoxicity. In Ca2+‐containing medium, hypaconitine‐induced Ca2+ entry was inhibited by modulators (2‐APB and SKF96365) of store‐operated Ca2+ channels and a protein kinase C (PKC) inhibitor (GF109203X). Hypaconitine induced Mn2+ influx indirectly suggesting that hypaconitine evoked Ca2+ entry. In Ca2+‐free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished hypaconitine‐induced [Ca2+]i rises. Conversely, treatment with hypaconitine inhibited thapsigargin‐induced [Ca2+]i rises. However, inhibition of phospholipase C (PLC) with U73122 did not inhibit hypaconitine‐induced [Ca2+]i rises. Together, hypaconitine caused cytotoxicity that was linked to preceding [Ca2+]i rises by Ca2+ influx via store‐operated Ca2+ entry involved PKC regulation and evoking PLC‐independent Ca2+ release from the endoplasmic reticulum. Because BAPTA‐AM loading only partially reversed hypaconitine‐induced cell death, it suggests that hypaconitine induced a second Ca2+‐independent cytotoxicity in HCN‐2 cells.
doi_str_mv 10.1111/1440-1681.13482
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2491946727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509223350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3712-afa4e1f7f0142bc8493ace32f82ba83038613d29de031f539e6e295adc8837c63</originalsourceid><addsrcrecordid>eNqFkT1PHDEQhq0oKByQmi6ylIZmwR_74S0vJz4iQaAgteXzjnWGPftie5VsR0XNb-SXxMsBRZpM49H4mUcjvQgdUnJMc53QsiQFrQU9prwU7AOavU8-ohnhpCqoaMgu2ovxjhBSkZp_Qruc16QlVT1Dj1egV8rZuMbeYKWT9e6lw51NEDbgAKv-XvXedng1bpT2ziabp5nTY_LJ_7HaphEr12HrVnZpkw8jBmNAp0n1bX5zO39-eJpf5X98sfiRe4YdDME71WMNfR8P0I5RfYTPr-8--nl2eru4KC6vz78v5peF5g1lhTKqBGoaQ2jJllqULVcaODOCLZXghIua8o61HRBOTcVbqIG1leq0ELzRNd9HR1vvJvhfA8Qk1zZOFygHfoiSlS1ty7phTUa__oPe-SHkizNVkZYxziuSqZMtpYOPMYCRm2DXKoySEjlFJKdA5BSIfIkob3x59Q7LNXTv_FsmGai2wG_bw_g_n1yc3mzFfwHN3pwe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509223350</pqid></control><display><type>article</type><title>Mechanism of action of a diterpene alkaloid hypaconitine on cytotoxicity and inhibitory effect of BAPTA‐AM in HCN‐2 neuronal cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hsu, Shu‐Shong ; Lin, Yung‐Shang ; Liang, Wei‐Zhe</creator><creatorcontrib>Hsu, Shu‐Shong ; Lin, Yung‐Shang ; Liang, Wei‐Zhe</creatorcontrib><description>Hypaconitine, a neuromuscular blocker, is a diterpene alkaloid found in the root of Aconitum carmichaelii. Although hypaconitine was shown to affect various physiological responses in neurological models, the effect of hypaconitine on cell viability and the mechanism of its action of Ca2+ handling is elusive in cortical neurons. This study examined whether hypaconitine altered viability and Ca2+ signalling in HCN‐2 neuronal cell lines. Cell viability was measured by the cell proliferation reagent (WST‐1). Cytosolic Ca2+ concentrations [Ca2+]i was measured by the Ca2+‐sensitive fluorescent dye fura‐2. In HCN‐2 cells, hypaconitine (10–50 μmol/L) induced cytotoxicity and [Ca2+]i rises in a concentration‐dependent manner. Removal of extracellular Ca2+ partially reduced the hypaconitine's effect on [Ca2+]i rises. Furthermore, chelation of cytosolic Ca2+ with BAPTA‐AM reduced hypaconitine's cytotoxicity. In Ca2+‐containing medium, hypaconitine‐induced Ca2+ entry was inhibited by modulators (2‐APB and SKF96365) of store‐operated Ca2+ channels and a protein kinase C (PKC) inhibitor (GF109203X). Hypaconitine induced Mn2+ influx indirectly suggesting that hypaconitine evoked Ca2+ entry. In Ca2+‐free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished hypaconitine‐induced [Ca2+]i rises. Conversely, treatment with hypaconitine inhibited thapsigargin‐induced [Ca2+]i rises. However, inhibition of phospholipase C (PLC) with U73122 did not inhibit hypaconitine‐induced [Ca2+]i rises. Together, hypaconitine caused cytotoxicity that was linked to preceding [Ca2+]i rises by Ca2+ influx via store‐operated Ca2+ entry involved PKC regulation and evoking PLC‐independent Ca2+ release from the endoplasmic reticulum. Because BAPTA‐AM loading only partially reversed hypaconitine‐induced cell death, it suggests that hypaconitine induced a second Ca2+‐independent cytotoxicity in HCN‐2 cells.</description><identifier>ISSN: 0305-1870</identifier><identifier>ISSN: 1440-1681</identifier><identifier>EISSN: 1440-1681</identifier><identifier>DOI: 10.1111/1440-1681.13482</identifier><identifier>PMID: 33609056</identifier><language>eng</language><publisher>Australia: Wiley Subscription Services, Inc</publisher><subject>Aconitine - analogs &amp; derivatives ; Aconitine - pharmacology ; Alkaloids ; BAPTA‐AM ; Ca2+ handling ; Ca2+-transporting ATPase ; Calcium (extracellular) ; Calcium (intracellular) ; Calcium (reticular) ; Calcium - metabolism ; Calcium channels ; Calcium Chelating Agents - pharmacology ; Calcium influx ; Calcium ions ; Calcium Signaling - drug effects ; Calcium signalling ; Cell death ; Cell Line ; Cell lines ; Cell proliferation ; Cell Survival - drug effects ; Cell viability ; Chelation ; Cytotoxicity ; Diterpenes ; Diterpenes - pharmacology ; Egtazic Acid - analogs &amp; derivatives ; Egtazic Acid - pharmacology ; Endoplasmic reticulum ; Enzyme inhibitors ; Fluorescent dyes ; Fluorescent indicators ; HCN‐2 cells ; Humans ; hypaconitine ; Kinases ; Modulators ; Neuromodulation ; Neurons - drug effects ; Neurons - metabolism ; Phospholipase C ; Physiological effects ; Physiological responses ; Protein kinase C ; Reagents ; store‐operated Ca2+ entry ; Thapsigargin ; Toxicity</subject><ispartof>Clinical and experimental pharmacology &amp; physiology, 2021-05, Vol.48 (5), p.801-810</ispartof><rights>2021 John Wiley &amp; Sons Australia, Ltd</rights><rights>2021 John Wiley &amp; Sons Australia, Ltd.</rights><rights>Copyright © 2021 John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3712-afa4e1f7f0142bc8493ace32f82ba83038613d29de031f539e6e295adc8837c63</citedby><cites>FETCH-LOGICAL-c3712-afa4e1f7f0142bc8493ace32f82ba83038613d29de031f539e6e295adc8837c63</cites><orcidid>0000-0001-7131-6377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1440-1681.13482$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1440-1681.13482$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33609056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsu, Shu‐Shong</creatorcontrib><creatorcontrib>Lin, Yung‐Shang</creatorcontrib><creatorcontrib>Liang, Wei‐Zhe</creatorcontrib><title>Mechanism of action of a diterpene alkaloid hypaconitine on cytotoxicity and inhibitory effect of BAPTA‐AM in HCN‐2 neuronal cells</title><title>Clinical and experimental pharmacology &amp; physiology</title><addtitle>Clin Exp Pharmacol Physiol</addtitle><description>Hypaconitine, a neuromuscular blocker, is a diterpene alkaloid found in the root of Aconitum carmichaelii. Although hypaconitine was shown to affect various physiological responses in neurological models, the effect of hypaconitine on cell viability and the mechanism of its action of Ca2+ handling is elusive in cortical neurons. This study examined whether hypaconitine altered viability and Ca2+ signalling in HCN‐2 neuronal cell lines. Cell viability was measured by the cell proliferation reagent (WST‐1). Cytosolic Ca2+ concentrations [Ca2+]i was measured by the Ca2+‐sensitive fluorescent dye fura‐2. In HCN‐2 cells, hypaconitine (10–50 μmol/L) induced cytotoxicity and [Ca2+]i rises in a concentration‐dependent manner. Removal of extracellular Ca2+ partially reduced the hypaconitine's effect on [Ca2+]i rises. Furthermore, chelation of cytosolic Ca2+ with BAPTA‐AM reduced hypaconitine's cytotoxicity. In Ca2+‐containing medium, hypaconitine‐induced Ca2+ entry was inhibited by modulators (2‐APB and SKF96365) of store‐operated Ca2+ channels and a protein kinase C (PKC) inhibitor (GF109203X). Hypaconitine induced Mn2+ influx indirectly suggesting that hypaconitine evoked Ca2+ entry. In Ca2+‐free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished hypaconitine‐induced [Ca2+]i rises. Conversely, treatment with hypaconitine inhibited thapsigargin‐induced [Ca2+]i rises. However, inhibition of phospholipase C (PLC) with U73122 did not inhibit hypaconitine‐induced [Ca2+]i rises. Together, hypaconitine caused cytotoxicity that was linked to preceding [Ca2+]i rises by Ca2+ influx via store‐operated Ca2+ entry involved PKC regulation and evoking PLC‐independent Ca2+ release from the endoplasmic reticulum. Because BAPTA‐AM loading only partially reversed hypaconitine‐induced cell death, it suggests that hypaconitine induced a second Ca2+‐independent cytotoxicity in HCN‐2 cells.</description><subject>Aconitine - analogs &amp; derivatives</subject><subject>Aconitine - pharmacology</subject><subject>Alkaloids</subject><subject>BAPTA‐AM</subject><subject>Ca2+ handling</subject><subject>Ca2+-transporting ATPase</subject><subject>Calcium (extracellular)</subject><subject>Calcium (intracellular)</subject><subject>Calcium (reticular)</subject><subject>Calcium - metabolism</subject><subject>Calcium channels</subject><subject>Calcium Chelating Agents - pharmacology</subject><subject>Calcium influx</subject><subject>Calcium ions</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium signalling</subject><subject>Cell death</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Cell proliferation</subject><subject>Cell Survival - drug effects</subject><subject>Cell viability</subject><subject>Chelation</subject><subject>Cytotoxicity</subject><subject>Diterpenes</subject><subject>Diterpenes - pharmacology</subject><subject>Egtazic Acid - analogs &amp; derivatives</subject><subject>Egtazic Acid - pharmacology</subject><subject>Endoplasmic reticulum</subject><subject>Enzyme inhibitors</subject><subject>Fluorescent dyes</subject><subject>Fluorescent indicators</subject><subject>HCN‐2 cells</subject><subject>Humans</subject><subject>hypaconitine</subject><subject>Kinases</subject><subject>Modulators</subject><subject>Neuromodulation</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Phospholipase C</subject><subject>Physiological effects</subject><subject>Physiological responses</subject><subject>Protein kinase C</subject><subject>Reagents</subject><subject>store‐operated Ca2+ entry</subject><subject>Thapsigargin</subject><subject>Toxicity</subject><issn>0305-1870</issn><issn>1440-1681</issn><issn>1440-1681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkT1PHDEQhq0oKByQmi6ylIZmwR_74S0vJz4iQaAgteXzjnWGPftie5VsR0XNb-SXxMsBRZpM49H4mUcjvQgdUnJMc53QsiQFrQU9prwU7AOavU8-ohnhpCqoaMgu2ovxjhBSkZp_Qruc16QlVT1Dj1egV8rZuMbeYKWT9e6lw51NEDbgAKv-XvXedng1bpT2ziabp5nTY_LJ_7HaphEr12HrVnZpkw8jBmNAp0n1bX5zO39-eJpf5X98sfiRe4YdDME71WMNfR8P0I5RfYTPr-8--nl2eru4KC6vz78v5peF5g1lhTKqBGoaQ2jJllqULVcaODOCLZXghIua8o61HRBOTcVbqIG1leq0ELzRNd9HR1vvJvhfA8Qk1zZOFygHfoiSlS1ty7phTUa__oPe-SHkizNVkZYxziuSqZMtpYOPMYCRm2DXKoySEjlFJKdA5BSIfIkob3x59Q7LNXTv_FsmGai2wG_bw_g_n1yc3mzFfwHN3pwe</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Hsu, Shu‐Shong</creator><creator>Lin, Yung‐Shang</creator><creator>Liang, Wei‐Zhe</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7131-6377</orcidid></search><sort><creationdate>202105</creationdate><title>Mechanism of action of a diterpene alkaloid hypaconitine on cytotoxicity and inhibitory effect of BAPTA‐AM in HCN‐2 neuronal cells</title><author>Hsu, Shu‐Shong ; Lin, Yung‐Shang ; Liang, Wei‐Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3712-afa4e1f7f0142bc8493ace32f82ba83038613d29de031f539e6e295adc8837c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aconitine - analogs &amp; derivatives</topic><topic>Aconitine - pharmacology</topic><topic>Alkaloids</topic><topic>BAPTA‐AM</topic><topic>Ca2+ handling</topic><topic>Ca2+-transporting ATPase</topic><topic>Calcium (extracellular)</topic><topic>Calcium (intracellular)</topic><topic>Calcium (reticular)</topic><topic>Calcium - metabolism</topic><topic>Calcium channels</topic><topic>Calcium Chelating Agents - pharmacology</topic><topic>Calcium influx</topic><topic>Calcium ions</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium signalling</topic><topic>Cell death</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Cell proliferation</topic><topic>Cell Survival - drug effects</topic><topic>Cell viability</topic><topic>Chelation</topic><topic>Cytotoxicity</topic><topic>Diterpenes</topic><topic>Diterpenes - pharmacology</topic><topic>Egtazic Acid - analogs &amp; derivatives</topic><topic>Egtazic Acid - pharmacology</topic><topic>Endoplasmic reticulum</topic><topic>Enzyme inhibitors</topic><topic>Fluorescent dyes</topic><topic>Fluorescent indicators</topic><topic>HCN‐2 cells</topic><topic>Humans</topic><topic>hypaconitine</topic><topic>Kinases</topic><topic>Modulators</topic><topic>Neuromodulation</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Phospholipase C</topic><topic>Physiological effects</topic><topic>Physiological responses</topic><topic>Protein kinase C</topic><topic>Reagents</topic><topic>store‐operated Ca2+ entry</topic><topic>Thapsigargin</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Shu‐Shong</creatorcontrib><creatorcontrib>Lin, Yung‐Shang</creatorcontrib><creatorcontrib>Liang, Wei‐Zhe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical and experimental pharmacology &amp; physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Shu‐Shong</au><au>Lin, Yung‐Shang</au><au>Liang, Wei‐Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of action of a diterpene alkaloid hypaconitine on cytotoxicity and inhibitory effect of BAPTA‐AM in HCN‐2 neuronal cells</atitle><jtitle>Clinical and experimental pharmacology &amp; physiology</jtitle><addtitle>Clin Exp Pharmacol Physiol</addtitle><date>2021-05</date><risdate>2021</risdate><volume>48</volume><issue>5</issue><spage>801</spage><epage>810</epage><pages>801-810</pages><issn>0305-1870</issn><issn>1440-1681</issn><eissn>1440-1681</eissn><abstract>Hypaconitine, a neuromuscular blocker, is a diterpene alkaloid found in the root of Aconitum carmichaelii. Although hypaconitine was shown to affect various physiological responses in neurological models, the effect of hypaconitine on cell viability and the mechanism of its action of Ca2+ handling is elusive in cortical neurons. This study examined whether hypaconitine altered viability and Ca2+ signalling in HCN‐2 neuronal cell lines. Cell viability was measured by the cell proliferation reagent (WST‐1). Cytosolic Ca2+ concentrations [Ca2+]i was measured by the Ca2+‐sensitive fluorescent dye fura‐2. In HCN‐2 cells, hypaconitine (10–50 μmol/L) induced cytotoxicity and [Ca2+]i rises in a concentration‐dependent manner. Removal of extracellular Ca2+ partially reduced the hypaconitine's effect on [Ca2+]i rises. Furthermore, chelation of cytosolic Ca2+ with BAPTA‐AM reduced hypaconitine's cytotoxicity. In Ca2+‐containing medium, hypaconitine‐induced Ca2+ entry was inhibited by modulators (2‐APB and SKF96365) of store‐operated Ca2+ channels and a protein kinase C (PKC) inhibitor (GF109203X). Hypaconitine induced Mn2+ influx indirectly suggesting that hypaconitine evoked Ca2+ entry. In Ca2+‐free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished hypaconitine‐induced [Ca2+]i rises. Conversely, treatment with hypaconitine inhibited thapsigargin‐induced [Ca2+]i rises. However, inhibition of phospholipase C (PLC) with U73122 did not inhibit hypaconitine‐induced [Ca2+]i rises. Together, hypaconitine caused cytotoxicity that was linked to preceding [Ca2+]i rises by Ca2+ influx via store‐operated Ca2+ entry involved PKC regulation and evoking PLC‐independent Ca2+ release from the endoplasmic reticulum. Because BAPTA‐AM loading only partially reversed hypaconitine‐induced cell death, it suggests that hypaconitine induced a second Ca2+‐independent cytotoxicity in HCN‐2 cells.</abstract><cop>Australia</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33609056</pmid><doi>10.1111/1440-1681.13482</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7131-6377</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0305-1870
ispartof Clinical and experimental pharmacology & physiology, 2021-05, Vol.48 (5), p.801-810
issn 0305-1870
1440-1681
1440-1681
language eng
recordid cdi_proquest_miscellaneous_2491946727
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Aconitine - analogs & derivatives
Aconitine - pharmacology
Alkaloids
BAPTA‐AM
Ca2+ handling
Ca2+-transporting ATPase
Calcium (extracellular)
Calcium (intracellular)
Calcium (reticular)
Calcium - metabolism
Calcium channels
Calcium Chelating Agents - pharmacology
Calcium influx
Calcium ions
Calcium Signaling - drug effects
Calcium signalling
Cell death
Cell Line
Cell lines
Cell proliferation
Cell Survival - drug effects
Cell viability
Chelation
Cytotoxicity
Diterpenes
Diterpenes - pharmacology
Egtazic Acid - analogs & derivatives
Egtazic Acid - pharmacology
Endoplasmic reticulum
Enzyme inhibitors
Fluorescent dyes
Fluorescent indicators
HCN‐2 cells
Humans
hypaconitine
Kinases
Modulators
Neuromodulation
Neurons - drug effects
Neurons - metabolism
Phospholipase C
Physiological effects
Physiological responses
Protein kinase C
Reagents
store‐operated Ca2+ entry
Thapsigargin
Toxicity
title Mechanism of action of a diterpene alkaloid hypaconitine on cytotoxicity and inhibitory effect of BAPTA‐AM in HCN‐2 neuronal cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A05%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20action%20of%20a%20diterpene%20alkaloid%20hypaconitine%20on%20cytotoxicity%20and%20inhibitory%20effect%20of%20BAPTA%E2%80%90AM%20in%20HCN%E2%80%902%20neuronal%20cells&rft.jtitle=Clinical%20and%20experimental%20pharmacology%20&%20physiology&rft.au=Hsu,%20Shu%E2%80%90Shong&rft.date=2021-05&rft.volume=48&rft.issue=5&rft.spage=801&rft.epage=810&rft.pages=801-810&rft.issn=0305-1870&rft.eissn=1440-1681&rft_id=info:doi/10.1111/1440-1681.13482&rft_dat=%3Cproquest_cross%3E2509223350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509223350&rft_id=info:pmid/33609056&rfr_iscdi=true