Method to Investigate the Distribution of Water-Soluble Drug-Delivery Systems in Fresh Frozen Tissues Using Imaging Mass Cytometry

Imaging mass cytometry (IMC) offers the opportunity to image metal- and heavy halogen-containing xenobiotics in a highly multiplexed experiment with other immunochemistry-based reagents to distinguish uptake into different tissue structures or cell types. However, in practice, many xenobiotics are n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2021-03, Vol.93 (8), p.3742-3749
Hauptverfasser: Strittmatter, Nicole, England, Richard M, Race, Alan M, Sutton, Daniel, Moss, Jennifer I, Maglennon, Gareth, Ling, Stephanie, Wong, Edmond, Rose, Jonathan, Purvis, Ian, Macdonald, Ruth, Barry, Simon T, Ashford, Marianne B, Goodwin, Richard J. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Imaging mass cytometry (IMC) offers the opportunity to image metal- and heavy halogen-containing xenobiotics in a highly multiplexed experiment with other immunochemistry-based reagents to distinguish uptake into different tissue structures or cell types. However, in practice, many xenobiotics are not amenable to this analysis, as any compound which is not bound to the tissue matrix will delocalize during aqueous sample-processing steps required for IMC analysis. Here, we present a strategy to perform IMC experiments on a water-soluble polysarcosine-modified dendrimer drug-delivery system (S-Dends). This strategy involves two consecutive imaging acquisitions on the same tissue section using the same instrumental platform, an initial laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MSI) experiment followed by tissue staining and a standard IMC experiment. We demonstrated that settings can be found for the initial ablation step that leave sufficient residual tissue for subsequent antibody staining and visualization. This workflow results in lateral resolution for the S-Dends of 2 μm followed by imaging of metal-tagged antibodies at 1 μm.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.0c03908