Numerical simulation for certain stochastic ordinary differential equations

A Monte Carlo simulation approach is presented for solving two problems based on stochastic ordinary differential equations, namely an initial-value problem for a nonlinear ordinary differential equation and a two-point boundary-value problem for a linear equation. The method consists of simulating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Comput. Phys.; (United States) 1988, Vol.74 (1), p.244-262
1. Verfasser: Spigler, Renato
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 262
container_issue 1
container_start_page 244
container_title J. Comput. Phys.; (United States)
container_volume 74
creator Spigler, Renato
description A Monte Carlo simulation approach is presented for solving two problems based on stochastic ordinary differential equations, namely an initial-value problem for a nonlinear ordinary differential equation and a two-point boundary-value problem for a linear equation. The method consists of simulating on the computer several realizations of the random process which appears in the coefficients of the equations, and then computing the average over the corresponding solutions. Since these two problems are related to the same physical problem, we are able to compare the results. Several plots are given to illustrate the results and a discussion of the various kinds of errors which affect the method is presented.
doi_str_mv 10.1016/0021-9991(88)90079-4
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_24913527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021999188900794</els_id><sourcerecordid>24913527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-baea84471e8c33504da9e39f109e05ca7dac7f9dc4d15a6d0c3e9494fc7308323</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AxfFheiimjTpNNkIMviFg250HeLLKxNpm5kkFfz3tlNx6eptzr3cdwg5ZfSKUba4prRguVKKXUh5qSitVC72yIxRRfOiYot9MvtDDslRjJ-UUlkKOSPPL32LwYFpsujavjHJ-S6rfcgAQzKuy2LysDYxOch8sK4z4Tuzrq4xYJfckMNtv0vFY3JQmybiye-dk_f7u7flY756fXha3q5y4AuR8g-DRgpRMZTAeUmFNQq5qoe5SEswlTVQ1cqCsKw0C0uBoxJK1FBxKnnB5-Rs6vXDKh3BJYQ1-K5DSLoU1ShggM4naBP8tseYdOsiYNOYDn0fdSEU42VRDaCYQAg-xoC13gTXDl9qRvWoV4_u9OhOS6l3erUYYjdTDIdPvxyGcQh2gNaFcYf17v-CH1sSgn4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24913527</pqid></control><display><type>article</type><title>Numerical simulation for certain stochastic ordinary differential equations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Spigler, Renato</creator><creatorcontrib>Spigler, Renato ; Courant Institute of Mathematical Sciences, New York University, New York, New York 10012</creatorcontrib><description>A Monte Carlo simulation approach is presented for solving two problems based on stochastic ordinary differential equations, namely an initial-value problem for a nonlinear ordinary differential equation and a two-point boundary-value problem for a linear equation. The method consists of simulating on the computer several realizations of the random process which appears in the coefficients of the equations, and then computing the average over the corresponding solutions. Since these two problems are related to the same physical problem, we are able to compare the results. Several plots are given to illustrate the results and a discussion of the various kinds of errors which affect the method is presented.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/0021-9991(88)90079-4</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>990230 - Mathematics &amp; Mathematical Models- (1987-1989) ; BOUNDARY-VALUE PROBLEMS ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; MONTE CARLO METHOD ; NUMERICAL SOLUTION ; WAVE PROPAGATION</subject><ispartof>J. Comput. Phys.; (United States), 1988, Vol.74 (1), p.244-262</ispartof><rights>1988</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-baea84471e8c33504da9e39f109e05ca7dac7f9dc4d15a6d0c3e9494fc7308323</citedby><cites>FETCH-LOGICAL-c364t-baea84471e8c33504da9e39f109e05ca7dac7f9dc4d15a6d0c3e9494fc7308323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0021-9991(88)90079-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,885,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/5470079$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Spigler, Renato</creatorcontrib><creatorcontrib>Courant Institute of Mathematical Sciences, New York University, New York, New York 10012</creatorcontrib><title>Numerical simulation for certain stochastic ordinary differential equations</title><title>J. Comput. Phys.; (United States)</title><description>A Monte Carlo simulation approach is presented for solving two problems based on stochastic ordinary differential equations, namely an initial-value problem for a nonlinear ordinary differential equation and a two-point boundary-value problem for a linear equation. The method consists of simulating on the computer several realizations of the random process which appears in the coefficients of the equations, and then computing the average over the corresponding solutions. Since these two problems are related to the same physical problem, we are able to compare the results. Several plots are given to illustrate the results and a discussion of the various kinds of errors which affect the method is presented.</description><subject>990230 - Mathematics &amp; Mathematical Models- (1987-1989)</subject><subject>BOUNDARY-VALUE PROBLEMS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>MONTE CARLO METHOD</subject><subject>NUMERICAL SOLUTION</subject><subject>WAVE PROPAGATION</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AxfFheiimjTpNNkIMviFg250HeLLKxNpm5kkFfz3tlNx6eptzr3cdwg5ZfSKUba4prRguVKKXUh5qSitVC72yIxRRfOiYot9MvtDDslRjJ-UUlkKOSPPL32LwYFpsujavjHJ-S6rfcgAQzKuy2LysDYxOch8sK4z4Tuzrq4xYJfckMNtv0vFY3JQmybiye-dk_f7u7flY756fXha3q5y4AuR8g-DRgpRMZTAeUmFNQq5qoe5SEswlTVQ1cqCsKw0C0uBoxJK1FBxKnnB5-Rs6vXDKh3BJYQ1-K5DSLoU1ShggM4naBP8tseYdOsiYNOYDn0fdSEU42VRDaCYQAg-xoC13gTXDl9qRvWoV4_u9OhOS6l3erUYYjdTDIdPvxyGcQh2gNaFcYf17v-CH1sSgn4</recordid><startdate>1988</startdate><enddate>1988</enddate><creator>Spigler, Renato</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>1988</creationdate><title>Numerical simulation for certain stochastic ordinary differential equations</title><author>Spigler, Renato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-baea84471e8c33504da9e39f109e05ca7dac7f9dc4d15a6d0c3e9494fc7308323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>990230 - Mathematics &amp; Mathematical Models- (1987-1989)</topic><topic>BOUNDARY-VALUE PROBLEMS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>MONTE CARLO METHOD</topic><topic>NUMERICAL SOLUTION</topic><topic>WAVE PROPAGATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spigler, Renato</creatorcontrib><creatorcontrib>Courant Institute of Mathematical Sciences, New York University, New York, New York 10012</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>J. Comput. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spigler, Renato</au><aucorp>Courant Institute of Mathematical Sciences, New York University, New York, New York 10012</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation for certain stochastic ordinary differential equations</atitle><jtitle>J. Comput. Phys.; (United States)</jtitle><date>1988</date><risdate>1988</risdate><volume>74</volume><issue>1</issue><spage>244</spage><epage>262</epage><pages>244-262</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A Monte Carlo simulation approach is presented for solving two problems based on stochastic ordinary differential equations, namely an initial-value problem for a nonlinear ordinary differential equation and a two-point boundary-value problem for a linear equation. The method consists of simulating on the computer several realizations of the random process which appears in the coefficients of the equations, and then computing the average over the corresponding solutions. Since these two problems are related to the same physical problem, we are able to compare the results. Several plots are given to illustrate the results and a discussion of the various kinds of errors which affect the method is presented.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/0021-9991(88)90079-4</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof J. Comput. Phys.; (United States), 1988, Vol.74 (1), p.244-262
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_24913527
source Access via ScienceDirect (Elsevier)
subjects 990230 - Mathematics & Mathematical Models- (1987-1989)
BOUNDARY-VALUE PROBLEMS
DIFFERENTIAL EQUATIONS
EQUATIONS
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
MONTE CARLO METHOD
NUMERICAL SOLUTION
WAVE PROPAGATION
title Numerical simulation for certain stochastic ordinary differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A06%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20for%20certain%20stochastic%20ordinary%20differential%20equations&rft.jtitle=J.%20Comput.%20Phys.;%20(United%20States)&rft.au=Spigler,%20Renato&rft.aucorp=Courant%20Institute%20of%20Mathematical%20Sciences,%20New%20York%20University,%20New%20York,%20New%20York%2010012&rft.date=1988&rft.volume=74&rft.issue=1&rft.spage=244&rft.epage=262&rft.pages=244-262&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/0021-9991(88)90079-4&rft_dat=%3Cproquest_osti_%3E24913527%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24913527&rft_id=info:pmid/&rft_els_id=0021999188900794&rfr_iscdi=true