Layer‐by‐Layer Processed Ternary Organic Photovoltaics with Efficiency over 18

Obtaining a finely tuned morphology of the active layer to facilitate both charge generation and charge extraction has long been the goal in the field of organic photovoltaics (OPVs). Here, a solution to resolve the above challenge via synergistically combining the layer‐by‐layer (LbL) procedure and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-03, Vol.33 (12), p.e2007231-n/a
Hauptverfasser: Zhan, Lingling, Li, Shuixing, Xia, Xinxin, Li, Yaokai, Lu, Xinhui, Zuo, Lijian, Shi, Minmin, Chen, Hongzheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page e2007231
container_title Advanced materials (Weinheim)
container_volume 33
creator Zhan, Lingling
Li, Shuixing
Xia, Xinxin
Li, Yaokai
Lu, Xinhui
Zuo, Lijian
Shi, Minmin
Chen, Hongzheng
description Obtaining a finely tuned morphology of the active layer to facilitate both charge generation and charge extraction has long been the goal in the field of organic photovoltaics (OPVs). Here, a solution to resolve the above challenge via synergistically combining the layer‐by‐layer (LbL) procedure and the ternary strategy is proposed and demonstrated. By adding an asymmetric electron acceptor, BTP‐S2, with lower miscibility to the binary donor:acceptor host of PM6:BO‐4Cl, vertical phase distribution can be formed with donor‐enrichment at the anode and acceptor‐enrichment at the cathode in OPV devices during the LbL processing. In contrast, LbL‐type binary OPVs based on PM6:BO‐4Cl still show bulk‐heterojunction like morphology. The formation of the vertical phase distribution can not only reduce charge recombination but also promote charge collection, thus enhancing the photocurrent and fill factor in LbL‐type ternary OPVs. Consequently, LbL‐type ternary OPVs exhibit the best efficiency of 18.16% (certified: 17.8%), which is among the highest values reported to date for OPVs. The work provides a facile and effective approach for achieving high‐efficiency OPVs with expected morphologies, and demonstrates the LbL‐type ternary strategy as being a promising procedure in fabricating OPV devices from the present laboratory study to future industrial production. Combining the layer‐by‐layer processing method and a ternary strategy, 18.16% efficiency, which is among the highest values reported to date, is achieved in single‐junction organic photovoltaics (OPVs) based on the PM6:BO‐4Cl:BTP‐S2 blend, superior to that (18.03%) of bulk‐heterojunction OPVs, proving that layer‐by‐layer processed ternary OPVs could be a promising approach to high efficiencies.
doi_str_mv 10.1002/adma.202007231
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2491080361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491080361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-3f2cff9f67ec8f7015b1656039ab0d9619daa3e50227cbe85d8696c48a70cfd73</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMotl62LmXAjZupJ8kkmSyL1gtULKLrIZNJ7Mi00WSqzM5H8Bl9ElNbFdy4OYcD3__D-RA6wDDAAOREVTM1IEAABKF4A_UxIzjNQLJN1AdJWSp5lvfQTgiPACA58G3Uo5TJXArSR7dj1Rn_8fZednF8HcnEO21CMFVyZ_xc-S658Q9qXutkMnWte3FNq2odkte6nSYja2tdm7nuEvcSwzjfQ1tWNcHsr_cuuj8f3Z1epuObi6vT4TjVVFCcUku0tdJyYXRuBWBWYs44UKlKqCTHslKKGgaECF2anFU5l1xnuRKgbSXoLjpe9T5597wwoS1mddCmadTcuEUoSCYx5EA5jujRH_TRLeJrTaQYSJIJKmWkBitKexeCN7Z48vUs_l9gKJa2i6Xt4sd2DByuaxflzFQ_-LfeCMgV8Fo3pvunrhieXQ9_yz8BpGSMgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509247399</pqid></control><display><type>article</type><title>Layer‐by‐Layer Processed Ternary Organic Photovoltaics with Efficiency over 18</title><source>Wiley Online Library</source><creator>Zhan, Lingling ; Li, Shuixing ; Xia, Xinxin ; Li, Yaokai ; Lu, Xinhui ; Zuo, Lijian ; Shi, Minmin ; Chen, Hongzheng</creator><creatorcontrib>Zhan, Lingling ; Li, Shuixing ; Xia, Xinxin ; Li, Yaokai ; Lu, Xinhui ; Zuo, Lijian ; Shi, Minmin ; Chen, Hongzheng</creatorcontrib><description>Obtaining a finely tuned morphology of the active layer to facilitate both charge generation and charge extraction has long been the goal in the field of organic photovoltaics (OPVs). Here, a solution to resolve the above challenge via synergistically combining the layer‐by‐layer (LbL) procedure and the ternary strategy is proposed and demonstrated. By adding an asymmetric electron acceptor, BTP‐S2, with lower miscibility to the binary donor:acceptor host of PM6:BO‐4Cl, vertical phase distribution can be formed with donor‐enrichment at the anode and acceptor‐enrichment at the cathode in OPV devices during the LbL processing. In contrast, LbL‐type binary OPVs based on PM6:BO‐4Cl still show bulk‐heterojunction like morphology. The formation of the vertical phase distribution can not only reduce charge recombination but also promote charge collection, thus enhancing the photocurrent and fill factor in LbL‐type ternary OPVs. Consequently, LbL‐type ternary OPVs exhibit the best efficiency of 18.16% (certified: 17.8%), which is among the highest values reported to date for OPVs. The work provides a facile and effective approach for achieving high‐efficiency OPVs with expected morphologies, and demonstrates the LbL‐type ternary strategy as being a promising procedure in fabricating OPV devices from the present laboratory study to future industrial production. Combining the layer‐by‐layer processing method and a ternary strategy, 18.16% efficiency, which is among the highest values reported to date, is achieved in single‐junction organic photovoltaics (OPVs) based on the PM6:BO‐4Cl:BTP‐S2 blend, superior to that (18.03%) of bulk‐heterojunction OPVs, proving that layer‐by‐layer processed ternary OPVs could be a promising approach to high efficiencies.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202007231</identifier><identifier>PMID: 33598972</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>bulk‐heterojunctions ; Efficiency ; Heterojunctions ; layer‐by‐layer assembly ; Miscibility ; Morphology ; Phase distribution ; Photoelectric effect ; Photoelectric emission ; Photovoltaic cells ; ternary organic photovoltaics ; Vertical distribution ; vertical phase distributions</subject><ispartof>Advanced materials (Weinheim), 2021-03, Vol.33 (12), p.e2007231-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-3f2cff9f67ec8f7015b1656039ab0d9619daa3e50227cbe85d8696c48a70cfd73</citedby><cites>FETCH-LOGICAL-c3731-3f2cff9f67ec8f7015b1656039ab0d9619daa3e50227cbe85d8696c48a70cfd73</cites><orcidid>0000-0003-2679-7655 ; 0000-0002-5922-9550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202007231$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202007231$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33598972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhan, Lingling</creatorcontrib><creatorcontrib>Li, Shuixing</creatorcontrib><creatorcontrib>Xia, Xinxin</creatorcontrib><creatorcontrib>Li, Yaokai</creatorcontrib><creatorcontrib>Lu, Xinhui</creatorcontrib><creatorcontrib>Zuo, Lijian</creatorcontrib><creatorcontrib>Shi, Minmin</creatorcontrib><creatorcontrib>Chen, Hongzheng</creatorcontrib><title>Layer‐by‐Layer Processed Ternary Organic Photovoltaics with Efficiency over 18</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Obtaining a finely tuned morphology of the active layer to facilitate both charge generation and charge extraction has long been the goal in the field of organic photovoltaics (OPVs). Here, a solution to resolve the above challenge via synergistically combining the layer‐by‐layer (LbL) procedure and the ternary strategy is proposed and demonstrated. By adding an asymmetric electron acceptor, BTP‐S2, with lower miscibility to the binary donor:acceptor host of PM6:BO‐4Cl, vertical phase distribution can be formed with donor‐enrichment at the anode and acceptor‐enrichment at the cathode in OPV devices during the LbL processing. In contrast, LbL‐type binary OPVs based on PM6:BO‐4Cl still show bulk‐heterojunction like morphology. The formation of the vertical phase distribution can not only reduce charge recombination but also promote charge collection, thus enhancing the photocurrent and fill factor in LbL‐type ternary OPVs. Consequently, LbL‐type ternary OPVs exhibit the best efficiency of 18.16% (certified: 17.8%), which is among the highest values reported to date for OPVs. The work provides a facile and effective approach for achieving high‐efficiency OPVs with expected morphologies, and demonstrates the LbL‐type ternary strategy as being a promising procedure in fabricating OPV devices from the present laboratory study to future industrial production. Combining the layer‐by‐layer processing method and a ternary strategy, 18.16% efficiency, which is among the highest values reported to date, is achieved in single‐junction organic photovoltaics (OPVs) based on the PM6:BO‐4Cl:BTP‐S2 blend, superior to that (18.03%) of bulk‐heterojunction OPVs, proving that layer‐by‐layer processed ternary OPVs could be a promising approach to high efficiencies.</description><subject>bulk‐heterojunctions</subject><subject>Efficiency</subject><subject>Heterojunctions</subject><subject>layer‐by‐layer assembly</subject><subject>Miscibility</subject><subject>Morphology</subject><subject>Phase distribution</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photovoltaic cells</subject><subject>ternary organic photovoltaics</subject><subject>Vertical distribution</subject><subject>vertical phase distributions</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMotl62LmXAjZupJ8kkmSyL1gtULKLrIZNJ7Mi00WSqzM5H8Bl9ElNbFdy4OYcD3__D-RA6wDDAAOREVTM1IEAABKF4A_UxIzjNQLJN1AdJWSp5lvfQTgiPACA58G3Uo5TJXArSR7dj1Rn_8fZednF8HcnEO21CMFVyZ_xc-S658Q9qXutkMnWte3FNq2odkte6nSYja2tdm7nuEvcSwzjfQ1tWNcHsr_cuuj8f3Z1epuObi6vT4TjVVFCcUku0tdJyYXRuBWBWYs44UKlKqCTHslKKGgaECF2anFU5l1xnuRKgbSXoLjpe9T5597wwoS1mddCmadTcuEUoSCYx5EA5jujRH_TRLeJrTaQYSJIJKmWkBitKexeCN7Z48vUs_l9gKJa2i6Xt4sd2DByuaxflzFQ_-LfeCMgV8Fo3pvunrhieXQ9_yz8BpGSMgw</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhan, Lingling</creator><creator>Li, Shuixing</creator><creator>Xia, Xinxin</creator><creator>Li, Yaokai</creator><creator>Lu, Xinhui</creator><creator>Zuo, Lijian</creator><creator>Shi, Minmin</creator><creator>Chen, Hongzheng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2679-7655</orcidid><orcidid>https://orcid.org/0000-0002-5922-9550</orcidid></search><sort><creationdate>20210301</creationdate><title>Layer‐by‐Layer Processed Ternary Organic Photovoltaics with Efficiency over 18</title><author>Zhan, Lingling ; Li, Shuixing ; Xia, Xinxin ; Li, Yaokai ; Lu, Xinhui ; Zuo, Lijian ; Shi, Minmin ; Chen, Hongzheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-3f2cff9f67ec8f7015b1656039ab0d9619daa3e50227cbe85d8696c48a70cfd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bulk‐heterojunctions</topic><topic>Efficiency</topic><topic>Heterojunctions</topic><topic>layer‐by‐layer assembly</topic><topic>Miscibility</topic><topic>Morphology</topic><topic>Phase distribution</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photovoltaic cells</topic><topic>ternary organic photovoltaics</topic><topic>Vertical distribution</topic><topic>vertical phase distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Lingling</creatorcontrib><creatorcontrib>Li, Shuixing</creatorcontrib><creatorcontrib>Xia, Xinxin</creatorcontrib><creatorcontrib>Li, Yaokai</creatorcontrib><creatorcontrib>Lu, Xinhui</creatorcontrib><creatorcontrib>Zuo, Lijian</creatorcontrib><creatorcontrib>Shi, Minmin</creatorcontrib><creatorcontrib>Chen, Hongzheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Lingling</au><au>Li, Shuixing</au><au>Xia, Xinxin</au><au>Li, Yaokai</au><au>Lu, Xinhui</au><au>Zuo, Lijian</au><au>Shi, Minmin</au><au>Chen, Hongzheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layer‐by‐Layer Processed Ternary Organic Photovoltaics with Efficiency over 18</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>33</volume><issue>12</issue><spage>e2007231</spage><epage>n/a</epage><pages>e2007231-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Obtaining a finely tuned morphology of the active layer to facilitate both charge generation and charge extraction has long been the goal in the field of organic photovoltaics (OPVs). Here, a solution to resolve the above challenge via synergistically combining the layer‐by‐layer (LbL) procedure and the ternary strategy is proposed and demonstrated. By adding an asymmetric electron acceptor, BTP‐S2, with lower miscibility to the binary donor:acceptor host of PM6:BO‐4Cl, vertical phase distribution can be formed with donor‐enrichment at the anode and acceptor‐enrichment at the cathode in OPV devices during the LbL processing. In contrast, LbL‐type binary OPVs based on PM6:BO‐4Cl still show bulk‐heterojunction like morphology. The formation of the vertical phase distribution can not only reduce charge recombination but also promote charge collection, thus enhancing the photocurrent and fill factor in LbL‐type ternary OPVs. Consequently, LbL‐type ternary OPVs exhibit the best efficiency of 18.16% (certified: 17.8%), which is among the highest values reported to date for OPVs. The work provides a facile and effective approach for achieving high‐efficiency OPVs with expected morphologies, and demonstrates the LbL‐type ternary strategy as being a promising procedure in fabricating OPV devices from the present laboratory study to future industrial production. Combining the layer‐by‐layer processing method and a ternary strategy, 18.16% efficiency, which is among the highest values reported to date, is achieved in single‐junction organic photovoltaics (OPVs) based on the PM6:BO‐4Cl:BTP‐S2 blend, superior to that (18.03%) of bulk‐heterojunction OPVs, proving that layer‐by‐layer processed ternary OPVs could be a promising approach to high efficiencies.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33598972</pmid><doi>10.1002/adma.202007231</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2679-7655</orcidid><orcidid>https://orcid.org/0000-0002-5922-9550</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-03, Vol.33 (12), p.e2007231-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2491080361
source Wiley Online Library
subjects bulk‐heterojunctions
Efficiency
Heterojunctions
layer‐by‐layer assembly
Miscibility
Morphology
Phase distribution
Photoelectric effect
Photoelectric emission
Photovoltaic cells
ternary organic photovoltaics
Vertical distribution
vertical phase distributions
title Layer‐by‐Layer Processed Ternary Organic Photovoltaics with Efficiency over 18
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layer%E2%80%90by%E2%80%90Layer%20Processed%20Ternary%20Organic%20Photovoltaics%20with%20Efficiency%20over%2018&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhan,%20Lingling&rft.date=2021-03-01&rft.volume=33&rft.issue=12&rft.spage=e2007231&rft.epage=n/a&rft.pages=e2007231-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202007231&rft_dat=%3Cproquest_cross%3E2491080361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509247399&rft_id=info:pmid/33598972&rfr_iscdi=true