Mathematical Modeling of Dynamic Cellular Association Patterns in Seminiferous Tubules
In vertebrates, sperm is generated in testicular tube-like structures called seminiferous tubules. The differentiation stages of spermatogenesis exhibit a dynamic spatiotemporal wavetrain pattern. There are two types of pattern—the vertical type, which is observed in mice, and the helical type, whic...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2021-02, Vol.83 (4), p.33-33, Article 33 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | 4 |
container_start_page | 33 |
container_title | Bulletin of mathematical biology |
container_volume | 83 |
creator | Kawamura, Mari Sugihara, Kei Takigawa-Imamura, Hisako Ogawa, Toshiyuki Miura, Takashi |
description | In vertebrates, sperm is generated in testicular tube-like structures called seminiferous tubules. The differentiation stages of spermatogenesis exhibit a dynamic spatiotemporal wavetrain pattern. There are two types of pattern—the vertical type, which is observed in mice, and the helical type, which is observed in humans. The mechanisms of this pattern difference remain little understood. In the present study, we used a three-species reaction–diffusion model to reproduce the wavetrain pattern observed in vivo. We hypothesized that the wavelength of the pattern in mice was larger than that in humans and undertook numerical simulations. We found complex patterns of helical and vertical pattern frequency, which can be understood by pattern selection using boundary conditions. From these theoretical results, we predicted that a small number of vertical patterns should be present in human seminiferous tubules. We then found vertical patterns in histological sections of human tubules, consistent with the theoretical prediction. Finally, we showed that the previously reported irregularity of the human pattern could be reproduced using two factors: a wider unstable wavenumber range and the irregular geometry of human compared with mouse seminiferous tubules. These results show that mathematical modeling is useful for understanding the pattern dynamics of seminiferous tubules in vivo. |
doi_str_mv | 10.1007/s11538-021-00863-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2490605901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490605901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-3863a569fce98e64d180ff1c7cc53527afdcbfdffa305d2c60c3e35ca18735f53</originalsourceid><addsrcrecordid>eNp9kEtPAyEYRYnR2Pr4Ay4MiRs3ox9QZoZlU5-JjSY-toQyUGlmmAozSfvvResjceGKBedeLgehIwJnBKA4j4RwVmZASQZQ5ixbbaEh4ZRmIge6jYYAgmYlHcEA7cW4gBQSTOyiAWNcjHLgQ_QyVd2raVTntKrxtK1M7fwctxZfrL1qnMYTU9d9rQIex9hql8jW4wfVdSb4iJ3Hj6Zx3lkT2j7ip37W1yYeoB2r6mgOv8599Hx1-TS5ye7ur28n47tMM0G7jKXViufCaiNKk48qUoK1RBdac8ZpoWylZ7ayVjHgFdU5aGYY14qUBeOWs310uuldhvatN7GTjYs6LVbepDmSjgSkfwogCT35gy7aPvi07pOilHEoEkU3lA5tjMFYuQyuUWEtCcgP63JjXSbr8tO6XKXQ8Vd1P2tM9RP51pwAtgFiuvJzE37f_qf2HXP-jh8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490223507</pqid></control><display><type>article</type><title>Mathematical Modeling of Dynamic Cellular Association Patterns in Seminiferous Tubules</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kawamura, Mari ; Sugihara, Kei ; Takigawa-Imamura, Hisako ; Ogawa, Toshiyuki ; Miura, Takashi</creator><creatorcontrib>Kawamura, Mari ; Sugihara, Kei ; Takigawa-Imamura, Hisako ; Ogawa, Toshiyuki ; Miura, Takashi</creatorcontrib><description>In vertebrates, sperm is generated in testicular tube-like structures called seminiferous tubules. The differentiation stages of spermatogenesis exhibit a dynamic spatiotemporal wavetrain pattern. There are two types of pattern—the vertical type, which is observed in mice, and the helical type, which is observed in humans. The mechanisms of this pattern difference remain little understood. In the present study, we used a three-species reaction–diffusion model to reproduce the wavetrain pattern observed in vivo. We hypothesized that the wavelength of the pattern in mice was larger than that in humans and undertook numerical simulations. We found complex patterns of helical and vertical pattern frequency, which can be understood by pattern selection using boundary conditions. From these theoretical results, we predicted that a small number of vertical patterns should be present in human seminiferous tubules. We then found vertical patterns in histological sections of human tubules, consistent with the theoretical prediction. Finally, we showed that the previously reported irregularity of the human pattern could be reproduced using two factors: a wider unstable wavenumber range and the irregular geometry of human compared with mouse seminiferous tubules. These results show that mathematical modeling is useful for understanding the pattern dynamics of seminiferous tubules in vivo.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-021-00863-x</identifier><identifier>PMID: 33594605</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boundary conditions ; Cell Biology ; Life Sciences ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Original Article ; Species diffusion ; Spermatogenesis ; Tubules ; Vertebrates ; Wavelengths</subject><ispartof>Bulletin of mathematical biology, 2021-02, Vol.83 (4), p.33-33, Article 33</ispartof><rights>The Author(s), under exclusive licence to Society for Mathematical Biology 2021</rights><rights>The Author(s), under exclusive licence to Society for Mathematical Biology 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c392t-3863a569fce98e64d180ff1c7cc53527afdcbfdffa305d2c60c3e35ca18735f53</cites><orcidid>0000-0003-3783-2153 ; 0000-0001-6355-1254 ; 0000-0003-1880-929X ; 0000-0002-5502-6967 ; 0000-0002-9465-275X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-021-00863-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-021-00863-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27906,27907,41470,42539,51301</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33594605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kawamura, Mari</creatorcontrib><creatorcontrib>Sugihara, Kei</creatorcontrib><creatorcontrib>Takigawa-Imamura, Hisako</creatorcontrib><creatorcontrib>Ogawa, Toshiyuki</creatorcontrib><creatorcontrib>Miura, Takashi</creatorcontrib><title>Mathematical Modeling of Dynamic Cellular Association Patterns in Seminiferous Tubules</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>In vertebrates, sperm is generated in testicular tube-like structures called seminiferous tubules. The differentiation stages of spermatogenesis exhibit a dynamic spatiotemporal wavetrain pattern. There are two types of pattern—the vertical type, which is observed in mice, and the helical type, which is observed in humans. The mechanisms of this pattern difference remain little understood. In the present study, we used a three-species reaction–diffusion model to reproduce the wavetrain pattern observed in vivo. We hypothesized that the wavelength of the pattern in mice was larger than that in humans and undertook numerical simulations. We found complex patterns of helical and vertical pattern frequency, which can be understood by pattern selection using boundary conditions. From these theoretical results, we predicted that a small number of vertical patterns should be present in human seminiferous tubules. We then found vertical patterns in histological sections of human tubules, consistent with the theoretical prediction. Finally, we showed that the previously reported irregularity of the human pattern could be reproduced using two factors: a wider unstable wavenumber range and the irregular geometry of human compared with mouse seminiferous tubules. These results show that mathematical modeling is useful for understanding the pattern dynamics of seminiferous tubules in vivo.</description><subject>Boundary conditions</subject><subject>Cell Biology</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Article</subject><subject>Species diffusion</subject><subject>Spermatogenesis</subject><subject>Tubules</subject><subject>Vertebrates</subject><subject>Wavelengths</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPAyEYRYnR2Pr4Ay4MiRs3ox9QZoZlU5-JjSY-toQyUGlmmAozSfvvResjceGKBedeLgehIwJnBKA4j4RwVmZASQZQ5ixbbaEh4ZRmIge6jYYAgmYlHcEA7cW4gBQSTOyiAWNcjHLgQ_QyVd2raVTntKrxtK1M7fwctxZfrL1qnMYTU9d9rQIex9hql8jW4wfVdSb4iJ3Hj6Zx3lkT2j7ip37W1yYeoB2r6mgOv8599Hx1-TS5ye7ur28n47tMM0G7jKXViufCaiNKk48qUoK1RBdac8ZpoWylZ7ayVjHgFdU5aGYY14qUBeOWs310uuldhvatN7GTjYs6LVbepDmSjgSkfwogCT35gy7aPvi07pOilHEoEkU3lA5tjMFYuQyuUWEtCcgP63JjXSbr8tO6XKXQ8Vd1P2tM9RP51pwAtgFiuvJzE37f_qf2HXP-jh8</recordid><startdate>20210217</startdate><enddate>20210217</enddate><creator>Kawamura, Mari</creator><creator>Sugihara, Kei</creator><creator>Takigawa-Imamura, Hisako</creator><creator>Ogawa, Toshiyuki</creator><creator>Miura, Takashi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3783-2153</orcidid><orcidid>https://orcid.org/0000-0001-6355-1254</orcidid><orcidid>https://orcid.org/0000-0003-1880-929X</orcidid><orcidid>https://orcid.org/0000-0002-5502-6967</orcidid><orcidid>https://orcid.org/0000-0002-9465-275X</orcidid></search><sort><creationdate>20210217</creationdate><title>Mathematical Modeling of Dynamic Cellular Association Patterns in Seminiferous Tubules</title><author>Kawamura, Mari ; Sugihara, Kei ; Takigawa-Imamura, Hisako ; Ogawa, Toshiyuki ; Miura, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-3863a569fce98e64d180ff1c7cc53527afdcbfdffa305d2c60c3e35ca18735f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Cell Biology</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Article</topic><topic>Species diffusion</topic><topic>Spermatogenesis</topic><topic>Tubules</topic><topic>Vertebrates</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawamura, Mari</creatorcontrib><creatorcontrib>Sugihara, Kei</creatorcontrib><creatorcontrib>Takigawa-Imamura, Hisako</creatorcontrib><creatorcontrib>Ogawa, Toshiyuki</creatorcontrib><creatorcontrib>Miura, Takashi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawamura, Mari</au><au>Sugihara, Kei</au><au>Takigawa-Imamura, Hisako</au><au>Ogawa, Toshiyuki</au><au>Miura, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Modeling of Dynamic Cellular Association Patterns in Seminiferous Tubules</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2021-02-17</date><risdate>2021</risdate><volume>83</volume><issue>4</issue><spage>33</spage><epage>33</epage><pages>33-33</pages><artnum>33</artnum><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>In vertebrates, sperm is generated in testicular tube-like structures called seminiferous tubules. The differentiation stages of spermatogenesis exhibit a dynamic spatiotemporal wavetrain pattern. There are two types of pattern—the vertical type, which is observed in mice, and the helical type, which is observed in humans. The mechanisms of this pattern difference remain little understood. In the present study, we used a three-species reaction–diffusion model to reproduce the wavetrain pattern observed in vivo. We hypothesized that the wavelength of the pattern in mice was larger than that in humans and undertook numerical simulations. We found complex patterns of helical and vertical pattern frequency, which can be understood by pattern selection using boundary conditions. From these theoretical results, we predicted that a small number of vertical patterns should be present in human seminiferous tubules. We then found vertical patterns in histological sections of human tubules, consistent with the theoretical prediction. Finally, we showed that the previously reported irregularity of the human pattern could be reproduced using two factors: a wider unstable wavenumber range and the irregular geometry of human compared with mouse seminiferous tubules. These results show that mathematical modeling is useful for understanding the pattern dynamics of seminiferous tubules in vivo.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33594605</pmid><doi>10.1007/s11538-021-00863-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3783-2153</orcidid><orcidid>https://orcid.org/0000-0001-6355-1254</orcidid><orcidid>https://orcid.org/0000-0003-1880-929X</orcidid><orcidid>https://orcid.org/0000-0002-5502-6967</orcidid><orcidid>https://orcid.org/0000-0002-9465-275X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2021-02, Vol.83 (4), p.33-33, Article 33 |
issn | 0092-8240 1522-9602 |
language | eng |
recordid | cdi_proquest_miscellaneous_2490605901 |
source | SpringerLink Journals - AutoHoldings |
subjects | Boundary conditions Cell Biology Life Sciences Mathematical analysis Mathematical and Computational Biology Mathematical models Mathematics Mathematics and Statistics Original Article Species diffusion Spermatogenesis Tubules Vertebrates Wavelengths |
title | Mathematical Modeling of Dynamic Cellular Association Patterns in Seminiferous Tubules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Modeling%20of%20Dynamic%20Cellular%20Association%20Patterns%20in%20Seminiferous%20Tubules&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Kawamura,%20Mari&rft.date=2021-02-17&rft.volume=83&rft.issue=4&rft.spage=33&rft.epage=33&rft.pages=33-33&rft.artnum=33&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-021-00863-x&rft_dat=%3Cproquest_cross%3E2490605901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490223507&rft_id=info:pmid/33594605&rfr_iscdi=true |