Mathematical Modeling of Dynamic Cellular Association Patterns in Seminiferous Tubules

In vertebrates, sperm is generated in testicular tube-like structures called seminiferous tubules. The differentiation stages of spermatogenesis exhibit a dynamic spatiotemporal wavetrain pattern. There are two types of pattern—the vertical type, which is observed in mice, and the helical type, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology 2021-02, Vol.83 (4), p.33-33, Article 33
Hauptverfasser: Kawamura, Mari, Sugihara, Kei, Takigawa-Imamura, Hisako, Ogawa, Toshiyuki, Miura, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 4
container_start_page 33
container_title Bulletin of mathematical biology
container_volume 83
creator Kawamura, Mari
Sugihara, Kei
Takigawa-Imamura, Hisako
Ogawa, Toshiyuki
Miura, Takashi
description In vertebrates, sperm is generated in testicular tube-like structures called seminiferous tubules. The differentiation stages of spermatogenesis exhibit a dynamic spatiotemporal wavetrain pattern. There are two types of pattern—the vertical type, which is observed in mice, and the helical type, which is observed in humans. The mechanisms of this pattern difference remain little understood. In the present study, we used a three-species reaction–diffusion model to reproduce the wavetrain pattern observed in vivo. We hypothesized that the wavelength of the pattern in mice was larger than that in humans and undertook numerical simulations. We found complex patterns of helical and vertical pattern frequency, which can be understood by pattern selection using boundary conditions. From these theoretical results, we predicted that a small number of vertical patterns should be present in human seminiferous tubules. We then found vertical patterns in histological sections of human tubules, consistent with the theoretical prediction. Finally, we showed that the previously reported irregularity of the human pattern could be reproduced using two factors: a wider unstable wavenumber range and the irregular geometry of human compared with mouse seminiferous tubules. These results show that mathematical modeling is useful for understanding the pattern dynamics of seminiferous tubules in vivo.
doi_str_mv 10.1007/s11538-021-00863-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2490605901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490605901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-3863a569fce98e64d180ff1c7cc53527afdcbfdffa305d2c60c3e35ca18735f53</originalsourceid><addsrcrecordid>eNp9kEtPAyEYRYnR2Pr4Ay4MiRs3ox9QZoZlU5-JjSY-toQyUGlmmAozSfvvResjceGKBedeLgehIwJnBKA4j4RwVmZASQZQ5ixbbaEh4ZRmIge6jYYAgmYlHcEA7cW4gBQSTOyiAWNcjHLgQ_QyVd2raVTntKrxtK1M7fwctxZfrL1qnMYTU9d9rQIex9hql8jW4wfVdSb4iJ3Hj6Zx3lkT2j7ip37W1yYeoB2r6mgOv8599Hx1-TS5ye7ur28n47tMM0G7jKXViufCaiNKk48qUoK1RBdac8ZpoWylZ7ayVjHgFdU5aGYY14qUBeOWs310uuldhvatN7GTjYs6LVbepDmSjgSkfwogCT35gy7aPvi07pOilHEoEkU3lA5tjMFYuQyuUWEtCcgP63JjXSbr8tO6XKXQ8Vd1P2tM9RP51pwAtgFiuvJzE37f_qf2HXP-jh8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490223507</pqid></control><display><type>article</type><title>Mathematical Modeling of Dynamic Cellular Association Patterns in Seminiferous Tubules</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kawamura, Mari ; Sugihara, Kei ; Takigawa-Imamura, Hisako ; Ogawa, Toshiyuki ; Miura, Takashi</creator><creatorcontrib>Kawamura, Mari ; Sugihara, Kei ; Takigawa-Imamura, Hisako ; Ogawa, Toshiyuki ; Miura, Takashi</creatorcontrib><description>In vertebrates, sperm is generated in testicular tube-like structures called seminiferous tubules. The differentiation stages of spermatogenesis exhibit a dynamic spatiotemporal wavetrain pattern. There are two types of pattern—the vertical type, which is observed in mice, and the helical type, which is observed in humans. The mechanisms of this pattern difference remain little understood. In the present study, we used a three-species reaction–diffusion model to reproduce the wavetrain pattern observed in vivo. We hypothesized that the wavelength of the pattern in mice was larger than that in humans and undertook numerical simulations. We found complex patterns of helical and vertical pattern frequency, which can be understood by pattern selection using boundary conditions. From these theoretical results, we predicted that a small number of vertical patterns should be present in human seminiferous tubules. We then found vertical patterns in histological sections of human tubules, consistent with the theoretical prediction. Finally, we showed that the previously reported irregularity of the human pattern could be reproduced using two factors: a wider unstable wavenumber range and the irregular geometry of human compared with mouse seminiferous tubules. These results show that mathematical modeling is useful for understanding the pattern dynamics of seminiferous tubules in vivo.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-021-00863-x</identifier><identifier>PMID: 33594605</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boundary conditions ; Cell Biology ; Life Sciences ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Original Article ; Species diffusion ; Spermatogenesis ; Tubules ; Vertebrates ; Wavelengths</subject><ispartof>Bulletin of mathematical biology, 2021-02, Vol.83 (4), p.33-33, Article 33</ispartof><rights>The Author(s), under exclusive licence to Society for Mathematical Biology 2021</rights><rights>The Author(s), under exclusive licence to Society for Mathematical Biology 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c392t-3863a569fce98e64d180ff1c7cc53527afdcbfdffa305d2c60c3e35ca18735f53</cites><orcidid>0000-0003-3783-2153 ; 0000-0001-6355-1254 ; 0000-0003-1880-929X ; 0000-0002-5502-6967 ; 0000-0002-9465-275X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-021-00863-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-021-00863-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27906,27907,41470,42539,51301</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33594605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kawamura, Mari</creatorcontrib><creatorcontrib>Sugihara, Kei</creatorcontrib><creatorcontrib>Takigawa-Imamura, Hisako</creatorcontrib><creatorcontrib>Ogawa, Toshiyuki</creatorcontrib><creatorcontrib>Miura, Takashi</creatorcontrib><title>Mathematical Modeling of Dynamic Cellular Association Patterns in Seminiferous Tubules</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>In vertebrates, sperm is generated in testicular tube-like structures called seminiferous tubules. The differentiation stages of spermatogenesis exhibit a dynamic spatiotemporal wavetrain pattern. There are two types of pattern—the vertical type, which is observed in mice, and the helical type, which is observed in humans. The mechanisms of this pattern difference remain little understood. In the present study, we used a three-species reaction–diffusion model to reproduce the wavetrain pattern observed in vivo. We hypothesized that the wavelength of the pattern in mice was larger than that in humans and undertook numerical simulations. We found complex patterns of helical and vertical pattern frequency, which can be understood by pattern selection using boundary conditions. From these theoretical results, we predicted that a small number of vertical patterns should be present in human seminiferous tubules. We then found vertical patterns in histological sections of human tubules, consistent with the theoretical prediction. Finally, we showed that the previously reported irregularity of the human pattern could be reproduced using two factors: a wider unstable wavenumber range and the irregular geometry of human compared with mouse seminiferous tubules. These results show that mathematical modeling is useful for understanding the pattern dynamics of seminiferous tubules in vivo.</description><subject>Boundary conditions</subject><subject>Cell Biology</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Article</subject><subject>Species diffusion</subject><subject>Spermatogenesis</subject><subject>Tubules</subject><subject>Vertebrates</subject><subject>Wavelengths</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPAyEYRYnR2Pr4Ay4MiRs3ox9QZoZlU5-JjSY-toQyUGlmmAozSfvvResjceGKBedeLgehIwJnBKA4j4RwVmZASQZQ5ixbbaEh4ZRmIge6jYYAgmYlHcEA7cW4gBQSTOyiAWNcjHLgQ_QyVd2raVTntKrxtK1M7fwctxZfrL1qnMYTU9d9rQIex9hql8jW4wfVdSb4iJ3Hj6Zx3lkT2j7ip37W1yYeoB2r6mgOv8599Hx1-TS5ye7ur28n47tMM0G7jKXViufCaiNKk48qUoK1RBdac8ZpoWylZ7ayVjHgFdU5aGYY14qUBeOWs310uuldhvatN7GTjYs6LVbepDmSjgSkfwogCT35gy7aPvi07pOilHEoEkU3lA5tjMFYuQyuUWEtCcgP63JjXSbr8tO6XKXQ8Vd1P2tM9RP51pwAtgFiuvJzE37f_qf2HXP-jh8</recordid><startdate>20210217</startdate><enddate>20210217</enddate><creator>Kawamura, Mari</creator><creator>Sugihara, Kei</creator><creator>Takigawa-Imamura, Hisako</creator><creator>Ogawa, Toshiyuki</creator><creator>Miura, Takashi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3783-2153</orcidid><orcidid>https://orcid.org/0000-0001-6355-1254</orcidid><orcidid>https://orcid.org/0000-0003-1880-929X</orcidid><orcidid>https://orcid.org/0000-0002-5502-6967</orcidid><orcidid>https://orcid.org/0000-0002-9465-275X</orcidid></search><sort><creationdate>20210217</creationdate><title>Mathematical Modeling of Dynamic Cellular Association Patterns in Seminiferous Tubules</title><author>Kawamura, Mari ; Sugihara, Kei ; Takigawa-Imamura, Hisako ; Ogawa, Toshiyuki ; Miura, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-3863a569fce98e64d180ff1c7cc53527afdcbfdffa305d2c60c3e35ca18735f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Cell Biology</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Article</topic><topic>Species diffusion</topic><topic>Spermatogenesis</topic><topic>Tubules</topic><topic>Vertebrates</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawamura, Mari</creatorcontrib><creatorcontrib>Sugihara, Kei</creatorcontrib><creatorcontrib>Takigawa-Imamura, Hisako</creatorcontrib><creatorcontrib>Ogawa, Toshiyuki</creatorcontrib><creatorcontrib>Miura, Takashi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawamura, Mari</au><au>Sugihara, Kei</au><au>Takigawa-Imamura, Hisako</au><au>Ogawa, Toshiyuki</au><au>Miura, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Modeling of Dynamic Cellular Association Patterns in Seminiferous Tubules</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2021-02-17</date><risdate>2021</risdate><volume>83</volume><issue>4</issue><spage>33</spage><epage>33</epage><pages>33-33</pages><artnum>33</artnum><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>In vertebrates, sperm is generated in testicular tube-like structures called seminiferous tubules. The differentiation stages of spermatogenesis exhibit a dynamic spatiotemporal wavetrain pattern. There are two types of pattern—the vertical type, which is observed in mice, and the helical type, which is observed in humans. The mechanisms of this pattern difference remain little understood. In the present study, we used a three-species reaction–diffusion model to reproduce the wavetrain pattern observed in vivo. We hypothesized that the wavelength of the pattern in mice was larger than that in humans and undertook numerical simulations. We found complex patterns of helical and vertical pattern frequency, which can be understood by pattern selection using boundary conditions. From these theoretical results, we predicted that a small number of vertical patterns should be present in human seminiferous tubules. We then found vertical patterns in histological sections of human tubules, consistent with the theoretical prediction. Finally, we showed that the previously reported irregularity of the human pattern could be reproduced using two factors: a wider unstable wavenumber range and the irregular geometry of human compared with mouse seminiferous tubules. These results show that mathematical modeling is useful for understanding the pattern dynamics of seminiferous tubules in vivo.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33594605</pmid><doi>10.1007/s11538-021-00863-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3783-2153</orcidid><orcidid>https://orcid.org/0000-0001-6355-1254</orcidid><orcidid>https://orcid.org/0000-0003-1880-929X</orcidid><orcidid>https://orcid.org/0000-0002-5502-6967</orcidid><orcidid>https://orcid.org/0000-0002-9465-275X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2021-02, Vol.83 (4), p.33-33, Article 33
issn 0092-8240
1522-9602
language eng
recordid cdi_proquest_miscellaneous_2490605901
source SpringerLink Journals - AutoHoldings
subjects Boundary conditions
Cell Biology
Life Sciences
Mathematical analysis
Mathematical and Computational Biology
Mathematical models
Mathematics
Mathematics and Statistics
Original Article
Species diffusion
Spermatogenesis
Tubules
Vertebrates
Wavelengths
title Mathematical Modeling of Dynamic Cellular Association Patterns in Seminiferous Tubules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Modeling%20of%20Dynamic%20Cellular%20Association%20Patterns%20in%20Seminiferous%20Tubules&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Kawamura,%20Mari&rft.date=2021-02-17&rft.volume=83&rft.issue=4&rft.spage=33&rft.epage=33&rft.pages=33-33&rft.artnum=33&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-021-00863-x&rft_dat=%3Cproquest_cross%3E2490605901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490223507&rft_id=info:pmid/33594605&rfr_iscdi=true