P3/O3 Integrated Layered Oxide as High‐Power and Long‐Life Cathode toward Na‐Ion Batteries

Low‐cost and stable sodium‐layered oxides (such as P2‐ and O3‐phases) are suggested as highly promising cathode materials for Na‐ion batteries (NIBs). Biphasic hybridization, mainly involving P2/O3 and P2/P3 biphases, is typically used to boost their electrochemical performances. Herein, a P3/O3 int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-03, Vol.17 (10), p.e2007236-n/a
Hauptverfasser: Zhang, Si‐Yuan, Guo, Yu‐Jie, Zhou, Ya‐Nan, Zhang, Xu‐Dong, Niu, Yu‐Bin, Wang, En‐Hui, Huang, Lin‐Bo, An, Peng‐Fei, Zhang, Jing, Yang, Xin‐An, Yin, Ya‐Xia, Xu, Sailong, Guo, Yu‐Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page e2007236
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 17
creator Zhang, Si‐Yuan
Guo, Yu‐Jie
Zhou, Ya‐Nan
Zhang, Xu‐Dong
Niu, Yu‐Bin
Wang, En‐Hui
Huang, Lin‐Bo
An, Peng‐Fei
Zhang, Jing
Yang, Xin‐An
Yin, Ya‐Xia
Xu, Sailong
Guo, Yu‐Guo
description Low‐cost and stable sodium‐layered oxides (such as P2‐ and O3‐phases) are suggested as highly promising cathode materials for Na‐ion batteries (NIBs). Biphasic hybridization, mainly involving P2/O3 and P2/P3 biphases, is typically used to boost their electrochemical performances. Herein, a P3/O3 intergrown layered oxide (Na2/3Ni1/3Mn1/3Ti1/3O2) as high‐rate and long‐life cathode for NIBs via tuning the amounts of Ti substitution in Na2/3Ni1/3Mn2/3−xTixO2 (x = 0, 1/6, 1/3, 2/3) is demonstrated. The X‐ray diffraction (XRD) Rietveld refinement and aberration‐corrected scanning transmission electron microscopy show the co‐existence of P3 and O3 phases, and density functional theory calculation corroborates the appearance of the anomalous O3 phase at the Ti substitution amount of 1/3. The P3/O3 biphasic cathode delivers an unexpected rate capability (≈88.7% of the initial capacity at a high rate of 5 C) and cycling stability (≈68.7% capacity retention after 2000 cycles at 1 C), superior to those of the sing phases P3‐Na2/3Ni1/3Mn2/3O2, P3‐Na2/3Ni1/3Mn1/2Ti1/6O2, and O3‐Na2/3Ni1/3Ti2/3O2. The highly reversible structural evolution of the P3/O3 integrated cathode observed by ex situ XRD, ex situ X‐ray absorption spectra, and the rapid Na+ diffusion kinetics, underpin the enhancement. These results show the important role of P3/O3 biphasic hybridization in designing and engineering layered oxide cathodes for NIBs. P3/O3 biphasic Na2/3Ni1/3Mn1/3Ti1/3O2 cathode material is prepared for Na‐ion batteries by tuning the Ti amounts. This P3/O3 intergrown cathode delivers superior rate capability and cycling stability to those of the pristine P3 and O3 phases, which are underpinned by the observed highly reversible structural transition of P3/O3 biphase and the rapid Na+ diffusion kinetics.
doi_str_mv 10.1002/smll.202007236
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2490129242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490129242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4126-156e1687feafbe4d395936cbbbf77f8d8df8793601e7783d33f61a4d5e53295d3</originalsourceid><addsrcrecordid>eNqFkM9OwkAQxjdGI4hePZomXrwA-6ftdo9KVEiqkKjnumVnoaR0cbcEufkIPqNP4hIQEy8eJjOZ-c03kw-hc4I7BGPadfOy7FBMMeaUxQeoSWLC2nFCxeG-JriBTpybYcwIDfkxajAWCcxJ2ESvI9YdsmBQ1TCxsgYVpHIN1ufhe6EgkC7oF5Pp18fnyKzABrLyhKkmvpEWGoKerKfGc7VZSauCR-kHA1MFN7KuwRbgTtGRlqWDs11uoZe72-dev50O7we967Q9DgmN2ySKgcQJ1yB1DqFiIhIsHud5rjnXiUqUTrjvYAKcJ0wxpmMiQxVBxKiIFGuhq63uwpq3Jbg6mxduDGUpKzBLl9FQYEIFDalHL_-gM7O0lf9uQwl_hvhooc6WGlvjnAWdLWwxl3adEZxtvM823md77_3CxU52mc9B7fEfsz0gtsCqKGH9j1z29JCmv-LfQUORSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499793179</pqid></control><display><type>article</type><title>P3/O3 Integrated Layered Oxide as High‐Power and Long‐Life Cathode toward Na‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Si‐Yuan ; Guo, Yu‐Jie ; Zhou, Ya‐Nan ; Zhang, Xu‐Dong ; Niu, Yu‐Bin ; Wang, En‐Hui ; Huang, Lin‐Bo ; An, Peng‐Fei ; Zhang, Jing ; Yang, Xin‐An ; Yin, Ya‐Xia ; Xu, Sailong ; Guo, Yu‐Guo</creator><creatorcontrib>Zhang, Si‐Yuan ; Guo, Yu‐Jie ; Zhou, Ya‐Nan ; Zhang, Xu‐Dong ; Niu, Yu‐Bin ; Wang, En‐Hui ; Huang, Lin‐Bo ; An, Peng‐Fei ; Zhang, Jing ; Yang, Xin‐An ; Yin, Ya‐Xia ; Xu, Sailong ; Guo, Yu‐Guo</creatorcontrib><description>Low‐cost and stable sodium‐layered oxides (such as P2‐ and O3‐phases) are suggested as highly promising cathode materials for Na‐ion batteries (NIBs). Biphasic hybridization, mainly involving P2/O3 and P2/P3 biphases, is typically used to boost their electrochemical performances. Herein, a P3/O3 intergrown layered oxide (Na2/3Ni1/3Mn1/3Ti1/3O2) as high‐rate and long‐life cathode for NIBs via tuning the amounts of Ti substitution in Na2/3Ni1/3Mn2/3−xTixO2 (x = 0, 1/6, 1/3, 2/3) is demonstrated. The X‐ray diffraction (XRD) Rietveld refinement and aberration‐corrected scanning transmission electron microscopy show the co‐existence of P3 and O3 phases, and density functional theory calculation corroborates the appearance of the anomalous O3 phase at the Ti substitution amount of 1/3. The P3/O3 biphasic cathode delivers an unexpected rate capability (≈88.7% of the initial capacity at a high rate of 5 C) and cycling stability (≈68.7% capacity retention after 2000 cycles at 1 C), superior to those of the sing phases P3‐Na2/3Ni1/3Mn2/3O2, P3‐Na2/3Ni1/3Mn1/2Ti1/6O2, and O3‐Na2/3Ni1/3Ti2/3O2. The highly reversible structural evolution of the P3/O3 integrated cathode observed by ex situ XRD, ex situ X‐ray absorption spectra, and the rapid Na+ diffusion kinetics, underpin the enhancement. These results show the important role of P3/O3 biphasic hybridization in designing and engineering layered oxide cathodes for NIBs. P3/O3 biphasic Na2/3Ni1/3Mn1/3Ti1/3O2 cathode material is prepared for Na‐ion batteries by tuning the Ti amounts. This P3/O3 intergrown cathode delivers superior rate capability and cycling stability to those of the pristine P3 and O3 phases, which are underpinned by the observed highly reversible structural transition of P3/O3 biphase and the rapid Na+ diffusion kinetics.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202007236</identifier><identifier>PMID: 33590714</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption spectra ; cathode ; Cathodes ; Density functional theory ; electrochemistry ; Electrode materials ; layered oxides ; Materials substitution ; Nanotechnology ; Na‐ion batteries ; P3/O3 biphase ; Phases ; Rechargeable batteries ; Scanning transmission electron microscopy ; Sodium ; Sodium-ion batteries ; Titanium ; X-ray diffraction</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-03, Vol.17 (10), p.e2007236-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4126-156e1687feafbe4d395936cbbbf77f8d8df8793601e7783d33f61a4d5e53295d3</citedby><cites>FETCH-LOGICAL-c4126-156e1687feafbe4d395936cbbbf77f8d8df8793601e7783d33f61a4d5e53295d3</cites><orcidid>0000-0003-0322-8476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202007236$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202007236$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33590714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Si‐Yuan</creatorcontrib><creatorcontrib>Guo, Yu‐Jie</creatorcontrib><creatorcontrib>Zhou, Ya‐Nan</creatorcontrib><creatorcontrib>Zhang, Xu‐Dong</creatorcontrib><creatorcontrib>Niu, Yu‐Bin</creatorcontrib><creatorcontrib>Wang, En‐Hui</creatorcontrib><creatorcontrib>Huang, Lin‐Bo</creatorcontrib><creatorcontrib>An, Peng‐Fei</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Yang, Xin‐An</creatorcontrib><creatorcontrib>Yin, Ya‐Xia</creatorcontrib><creatorcontrib>Xu, Sailong</creatorcontrib><creatorcontrib>Guo, Yu‐Guo</creatorcontrib><title>P3/O3 Integrated Layered Oxide as High‐Power and Long‐Life Cathode toward Na‐Ion Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Low‐cost and stable sodium‐layered oxides (such as P2‐ and O3‐phases) are suggested as highly promising cathode materials for Na‐ion batteries (NIBs). Biphasic hybridization, mainly involving P2/O3 and P2/P3 biphases, is typically used to boost their electrochemical performances. Herein, a P3/O3 intergrown layered oxide (Na2/3Ni1/3Mn1/3Ti1/3O2) as high‐rate and long‐life cathode for NIBs via tuning the amounts of Ti substitution in Na2/3Ni1/3Mn2/3−xTixO2 (x = 0, 1/6, 1/3, 2/3) is demonstrated. The X‐ray diffraction (XRD) Rietveld refinement and aberration‐corrected scanning transmission electron microscopy show the co‐existence of P3 and O3 phases, and density functional theory calculation corroborates the appearance of the anomalous O3 phase at the Ti substitution amount of 1/3. The P3/O3 biphasic cathode delivers an unexpected rate capability (≈88.7% of the initial capacity at a high rate of 5 C) and cycling stability (≈68.7% capacity retention after 2000 cycles at 1 C), superior to those of the sing phases P3‐Na2/3Ni1/3Mn2/3O2, P3‐Na2/3Ni1/3Mn1/2Ti1/6O2, and O3‐Na2/3Ni1/3Ti2/3O2. The highly reversible structural evolution of the P3/O3 integrated cathode observed by ex situ XRD, ex situ X‐ray absorption spectra, and the rapid Na+ diffusion kinetics, underpin the enhancement. These results show the important role of P3/O3 biphasic hybridization in designing and engineering layered oxide cathodes for NIBs. P3/O3 biphasic Na2/3Ni1/3Mn1/3Ti1/3O2 cathode material is prepared for Na‐ion batteries by tuning the Ti amounts. This P3/O3 intergrown cathode delivers superior rate capability and cycling stability to those of the pristine P3 and O3 phases, which are underpinned by the observed highly reversible structural transition of P3/O3 biphase and the rapid Na+ diffusion kinetics.</description><subject>Absorption spectra</subject><subject>cathode</subject><subject>Cathodes</subject><subject>Density functional theory</subject><subject>electrochemistry</subject><subject>Electrode materials</subject><subject>layered oxides</subject><subject>Materials substitution</subject><subject>Nanotechnology</subject><subject>Na‐ion batteries</subject><subject>P3/O3 biphase</subject><subject>Phases</subject><subject>Rechargeable batteries</subject><subject>Scanning transmission electron microscopy</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Titanium</subject><subject>X-ray diffraction</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM9OwkAQxjdGI4hePZomXrwA-6ftdo9KVEiqkKjnumVnoaR0cbcEufkIPqNP4hIQEy8eJjOZ-c03kw-hc4I7BGPadfOy7FBMMeaUxQeoSWLC2nFCxeG-JriBTpybYcwIDfkxajAWCcxJ2ESvI9YdsmBQ1TCxsgYVpHIN1ufhe6EgkC7oF5Pp18fnyKzABrLyhKkmvpEWGoKerKfGc7VZSauCR-kHA1MFN7KuwRbgTtGRlqWDs11uoZe72-dev50O7we967Q9DgmN2ySKgcQJ1yB1DqFiIhIsHud5rjnXiUqUTrjvYAKcJ0wxpmMiQxVBxKiIFGuhq63uwpq3Jbg6mxduDGUpKzBLl9FQYEIFDalHL_-gM7O0lf9uQwl_hvhooc6WGlvjnAWdLWwxl3adEZxtvM823md77_3CxU52mc9B7fEfsz0gtsCqKGH9j1z29JCmv-LfQUORSQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhang, Si‐Yuan</creator><creator>Guo, Yu‐Jie</creator><creator>Zhou, Ya‐Nan</creator><creator>Zhang, Xu‐Dong</creator><creator>Niu, Yu‐Bin</creator><creator>Wang, En‐Hui</creator><creator>Huang, Lin‐Bo</creator><creator>An, Peng‐Fei</creator><creator>Zhang, Jing</creator><creator>Yang, Xin‐An</creator><creator>Yin, Ya‐Xia</creator><creator>Xu, Sailong</creator><creator>Guo, Yu‐Guo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0322-8476</orcidid></search><sort><creationdate>20210301</creationdate><title>P3/O3 Integrated Layered Oxide as High‐Power and Long‐Life Cathode toward Na‐Ion Batteries</title><author>Zhang, Si‐Yuan ; Guo, Yu‐Jie ; Zhou, Ya‐Nan ; Zhang, Xu‐Dong ; Niu, Yu‐Bin ; Wang, En‐Hui ; Huang, Lin‐Bo ; An, Peng‐Fei ; Zhang, Jing ; Yang, Xin‐An ; Yin, Ya‐Xia ; Xu, Sailong ; Guo, Yu‐Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4126-156e1687feafbe4d395936cbbbf77f8d8df8793601e7783d33f61a4d5e53295d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectra</topic><topic>cathode</topic><topic>Cathodes</topic><topic>Density functional theory</topic><topic>electrochemistry</topic><topic>Electrode materials</topic><topic>layered oxides</topic><topic>Materials substitution</topic><topic>Nanotechnology</topic><topic>Na‐ion batteries</topic><topic>P3/O3 biphase</topic><topic>Phases</topic><topic>Rechargeable batteries</topic><topic>Scanning transmission electron microscopy</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Titanium</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Si‐Yuan</creatorcontrib><creatorcontrib>Guo, Yu‐Jie</creatorcontrib><creatorcontrib>Zhou, Ya‐Nan</creatorcontrib><creatorcontrib>Zhang, Xu‐Dong</creatorcontrib><creatorcontrib>Niu, Yu‐Bin</creatorcontrib><creatorcontrib>Wang, En‐Hui</creatorcontrib><creatorcontrib>Huang, Lin‐Bo</creatorcontrib><creatorcontrib>An, Peng‐Fei</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Yang, Xin‐An</creatorcontrib><creatorcontrib>Yin, Ya‐Xia</creatorcontrib><creatorcontrib>Xu, Sailong</creatorcontrib><creatorcontrib>Guo, Yu‐Guo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Si‐Yuan</au><au>Guo, Yu‐Jie</au><au>Zhou, Ya‐Nan</au><au>Zhang, Xu‐Dong</au><au>Niu, Yu‐Bin</au><au>Wang, En‐Hui</au><au>Huang, Lin‐Bo</au><au>An, Peng‐Fei</au><au>Zhang, Jing</au><au>Yang, Xin‐An</au><au>Yin, Ya‐Xia</au><au>Xu, Sailong</au><au>Guo, Yu‐Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P3/O3 Integrated Layered Oxide as High‐Power and Long‐Life Cathode toward Na‐Ion Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>e2007236</spage><epage>n/a</epage><pages>e2007236-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Low‐cost and stable sodium‐layered oxides (such as P2‐ and O3‐phases) are suggested as highly promising cathode materials for Na‐ion batteries (NIBs). Biphasic hybridization, mainly involving P2/O3 and P2/P3 biphases, is typically used to boost their electrochemical performances. Herein, a P3/O3 intergrown layered oxide (Na2/3Ni1/3Mn1/3Ti1/3O2) as high‐rate and long‐life cathode for NIBs via tuning the amounts of Ti substitution in Na2/3Ni1/3Mn2/3−xTixO2 (x = 0, 1/6, 1/3, 2/3) is demonstrated. The X‐ray diffraction (XRD) Rietveld refinement and aberration‐corrected scanning transmission electron microscopy show the co‐existence of P3 and O3 phases, and density functional theory calculation corroborates the appearance of the anomalous O3 phase at the Ti substitution amount of 1/3. The P3/O3 biphasic cathode delivers an unexpected rate capability (≈88.7% of the initial capacity at a high rate of 5 C) and cycling stability (≈68.7% capacity retention after 2000 cycles at 1 C), superior to those of the sing phases P3‐Na2/3Ni1/3Mn2/3O2, P3‐Na2/3Ni1/3Mn1/2Ti1/6O2, and O3‐Na2/3Ni1/3Ti2/3O2. The highly reversible structural evolution of the P3/O3 integrated cathode observed by ex situ XRD, ex situ X‐ray absorption spectra, and the rapid Na+ diffusion kinetics, underpin the enhancement. These results show the important role of P3/O3 biphasic hybridization in designing and engineering layered oxide cathodes for NIBs. P3/O3 biphasic Na2/3Ni1/3Mn1/3Ti1/3O2 cathode material is prepared for Na‐ion batteries by tuning the Ti amounts. This P3/O3 intergrown cathode delivers superior rate capability and cycling stability to those of the pristine P3 and O3 phases, which are underpinned by the observed highly reversible structural transition of P3/O3 biphase and the rapid Na+ diffusion kinetics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33590714</pmid><doi>10.1002/smll.202007236</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0322-8476</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2021-03, Vol.17 (10), p.e2007236-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2490129242
source Wiley Online Library Journals Frontfile Complete
subjects Absorption spectra
cathode
Cathodes
Density functional theory
electrochemistry
Electrode materials
layered oxides
Materials substitution
Nanotechnology
Na‐ion batteries
P3/O3 biphase
Phases
Rechargeable batteries
Scanning transmission electron microscopy
Sodium
Sodium-ion batteries
Titanium
X-ray diffraction
title P3/O3 Integrated Layered Oxide as High‐Power and Long‐Life Cathode toward Na‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P3/O3%20Integrated%20Layered%20Oxide%20as%20High%E2%80%90Power%20and%20Long%E2%80%90Life%20Cathode%20toward%20Na%E2%80%90Ion%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Si%E2%80%90Yuan&rft.date=2021-03-01&rft.volume=17&rft.issue=10&rft.spage=e2007236&rft.epage=n/a&rft.pages=e2007236-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202007236&rft_dat=%3Cproquest_cross%3E2490129242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499793179&rft_id=info:pmid/33590714&rfr_iscdi=true