Anisotropic band flattening in graphene with one-dimensional superlattices
Patterning graphene with a spatially periodic potential provides a powerful means to modify its electronic properties 1 – 3 . In particular, in twisted bilayers, coupling to the resulting moiré superlattice yields an isolated flat band that hosts correlated many-body phases 4 , 5 . However, both the...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2021-05, Vol.16 (5), p.525-530 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 530 |
---|---|
container_issue | 5 |
container_start_page | 525 |
container_title | Nature nanotechnology |
container_volume | 16 |
creator | Li, Yutao Dietrich, Scott Forsythe, Carlos Taniguchi, Takashi Watanabe, Kenji Moon, Pilkyung Dean, Cory R. |
description | Patterning graphene with a spatially periodic potential provides a powerful means to modify its electronic properties
1
–
3
. In particular, in twisted bilayers, coupling to the resulting moiré superlattice yields an isolated flat band that hosts correlated many-body phases
4
,
5
. However, both the symmetry and strength of the effective moiré potential are constrained by the constituent crystals, limiting its tunability. Here, we have exploited the technique of dielectric patterning
6
to subject graphene to a one-dimensional electrostatic superlattice (SL)
1
. We observed the emergence of multiple Dirac cones and found evidence that with increasing SL potential the main and satellite Dirac cones are sequentially flattened in the direction parallel to the SL basis vector, behaviour resulting from the interaction between the one-dimensional SL electric potential and the massless Dirac fermions hosted by graphene. Our results demonstrate the ability to induce tunable anisotropy in high-mobility two-dimensional materials, a long-desired property for novel electronic and optical applications
7
,
8
. Moreover, these findings offer a new approach to engineering flat energy bands where electron interactions can lead to emergent properties
9
.
Dielectric patterning allows tunable anisotropy in high-mobility one-dimensional graphene electrostatic superlattices. |
doi_str_mv | 10.1038/s41565-021-00849-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2490124811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490124811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-5f990e7d1a8203867c7cc2cd2e7c8c5a0a60e714c949286c48981bc80f05fbb03</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRuLr6BzyYJl68VIFCC8fNxs9s4kXPhFK6y6aFCm2M_15q1zXx4GlI5pl3hgeACwRvEMzYbSCI5jSFGKUQMsJTfgBOUEFYmmWcHu7frJiB0xC2EFLMMTkGsyyjjDOET8Dzwprgeu86o5JS2iqpG9n32hq7ToxN1l52G2118mH6TeKsTivTahuMs7JJwtBpP_JG6XAGjmrZBH2-q3Pwdn_3unxMVy8PT8vFKlVZQfuU1pxDXVRIMhx_kReqUAqrCutCMUUllHlsI6I44ZjlioyXlorBGtK6LGE2B9dTbufd-6BDL1oTlG4aabUbgsCEQ4QJQyiiV3_QrRt8vDxSFOekoBjySOGJUt6F4HUtOm9a6T8FgmI0LSbTIpoW36bFOHS5ix7KVlf7kR-1EcgmIMSWXWv_u_uf2C9gyIjW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526475209</pqid></control><display><type>article</type><title>Anisotropic band flattening in graphene with one-dimensional superlattices</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Li, Yutao ; Dietrich, Scott ; Forsythe, Carlos ; Taniguchi, Takashi ; Watanabe, Kenji ; Moon, Pilkyung ; Dean, Cory R.</creator><creatorcontrib>Li, Yutao ; Dietrich, Scott ; Forsythe, Carlos ; Taniguchi, Takashi ; Watanabe, Kenji ; Moon, Pilkyung ; Dean, Cory R.</creatorcontrib><description>Patterning graphene with a spatially periodic potential provides a powerful means to modify its electronic properties
1
–
3
. In particular, in twisted bilayers, coupling to the resulting moiré superlattice yields an isolated flat band that hosts correlated many-body phases
4
,
5
. However, both the symmetry and strength of the effective moiré potential are constrained by the constituent crystals, limiting its tunability. Here, we have exploited the technique of dielectric patterning
6
to subject graphene to a one-dimensional electrostatic superlattice (SL)
1
. We observed the emergence of multiple Dirac cones and found evidence that with increasing SL potential the main and satellite Dirac cones are sequentially flattened in the direction parallel to the SL basis vector, behaviour resulting from the interaction between the one-dimensional SL electric potential and the massless Dirac fermions hosted by graphene. Our results demonstrate the ability to induce tunable anisotropy in high-mobility two-dimensional materials, a long-desired property for novel electronic and optical applications
7
,
8
. Moreover, these findings offer a new approach to engineering flat energy bands where electron interactions can lead to emergent properties
9
.
Dielectric patterning allows tunable anisotropy in high-mobility one-dimensional graphene electrostatic superlattices.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-021-00849-9</identifier><identifier>PMID: 33589812</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/925/918/1052 ; 639/925/927/1007 ; Anisotropy ; Bilayers ; Chemistry and Materials Science ; Cones ; Crystals ; Electric potential ; Energy bands ; Fermions ; Graphene ; Letter ; Materials Science ; Mobility ; Nanotechnology ; Nanotechnology and Microengineering ; Optical properties ; Superlattices ; Two dimensional materials</subject><ispartof>Nature nanotechnology, 2021-05, Vol.16 (5), p.525-530</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-5f990e7d1a8203867c7cc2cd2e7c8c5a0a60e714c949286c48981bc80f05fbb03</citedby><cites>FETCH-LOGICAL-c375t-5f990e7d1a8203867c7cc2cd2e7c8c5a0a60e714c949286c48981bc80f05fbb03</cites><orcidid>0000-0002-1467-3105 ; 0000-0003-3701-8119 ; 0000-0003-3994-4255 ; 0000-0003-2228-5337 ; 0000-0003-2967-5960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33589812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yutao</creatorcontrib><creatorcontrib>Dietrich, Scott</creatorcontrib><creatorcontrib>Forsythe, Carlos</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Moon, Pilkyung</creatorcontrib><creatorcontrib>Dean, Cory R.</creatorcontrib><title>Anisotropic band flattening in graphene with one-dimensional superlattices</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Patterning graphene with a spatially periodic potential provides a powerful means to modify its electronic properties
1
–
3
. In particular, in twisted bilayers, coupling to the resulting moiré superlattice yields an isolated flat band that hosts correlated many-body phases
4
,
5
. However, both the symmetry and strength of the effective moiré potential are constrained by the constituent crystals, limiting its tunability. Here, we have exploited the technique of dielectric patterning
6
to subject graphene to a one-dimensional electrostatic superlattice (SL)
1
. We observed the emergence of multiple Dirac cones and found evidence that with increasing SL potential the main and satellite Dirac cones are sequentially flattened in the direction parallel to the SL basis vector, behaviour resulting from the interaction between the one-dimensional SL electric potential and the massless Dirac fermions hosted by graphene. Our results demonstrate the ability to induce tunable anisotropy in high-mobility two-dimensional materials, a long-desired property for novel electronic and optical applications
7
,
8
. Moreover, these findings offer a new approach to engineering flat energy bands where electron interactions can lead to emergent properties
9
.
Dielectric patterning allows tunable anisotropy in high-mobility one-dimensional graphene electrostatic superlattices.</description><subject>142/126</subject><subject>639/925/918/1052</subject><subject>639/925/927/1007</subject><subject>Anisotropy</subject><subject>Bilayers</subject><subject>Chemistry and Materials Science</subject><subject>Cones</subject><subject>Crystals</subject><subject>Electric potential</subject><subject>Energy bands</subject><subject>Fermions</subject><subject>Graphene</subject><subject>Letter</subject><subject>Materials Science</subject><subject>Mobility</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optical properties</subject><subject>Superlattices</subject><subject>Two dimensional materials</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1PxCAQhonRuLr6BzyYJl68VIFCC8fNxs9s4kXPhFK6y6aFCm2M_15q1zXx4GlI5pl3hgeACwRvEMzYbSCI5jSFGKUQMsJTfgBOUEFYmmWcHu7frJiB0xC2EFLMMTkGsyyjjDOET8Dzwprgeu86o5JS2iqpG9n32hq7ToxN1l52G2118mH6TeKsTivTahuMs7JJwtBpP_JG6XAGjmrZBH2-q3Pwdn_3unxMVy8PT8vFKlVZQfuU1pxDXVRIMhx_kReqUAqrCutCMUUllHlsI6I44ZjlioyXlorBGtK6LGE2B9dTbufd-6BDL1oTlG4aabUbgsCEQ4QJQyiiV3_QrRt8vDxSFOekoBjySOGJUt6F4HUtOm9a6T8FgmI0LSbTIpoW36bFOHS5ix7KVlf7kR-1EcgmIMSWXWv_u_uf2C9gyIjW</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Li, Yutao</creator><creator>Dietrich, Scott</creator><creator>Forsythe, Carlos</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Moon, Pilkyung</creator><creator>Dean, Cory R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-3994-4255</orcidid><orcidid>https://orcid.org/0000-0003-2228-5337</orcidid><orcidid>https://orcid.org/0000-0003-2967-5960</orcidid></search><sort><creationdate>20210501</creationdate><title>Anisotropic band flattening in graphene with one-dimensional superlattices</title><author>Li, Yutao ; Dietrich, Scott ; Forsythe, Carlos ; Taniguchi, Takashi ; Watanabe, Kenji ; Moon, Pilkyung ; Dean, Cory R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-5f990e7d1a8203867c7cc2cd2e7c8c5a0a60e714c949286c48981bc80f05fbb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>142/126</topic><topic>639/925/918/1052</topic><topic>639/925/927/1007</topic><topic>Anisotropy</topic><topic>Bilayers</topic><topic>Chemistry and Materials Science</topic><topic>Cones</topic><topic>Crystals</topic><topic>Electric potential</topic><topic>Energy bands</topic><topic>Fermions</topic><topic>Graphene</topic><topic>Letter</topic><topic>Materials Science</topic><topic>Mobility</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optical properties</topic><topic>Superlattices</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yutao</creatorcontrib><creatorcontrib>Dietrich, Scott</creatorcontrib><creatorcontrib>Forsythe, Carlos</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Moon, Pilkyung</creatorcontrib><creatorcontrib>Dean, Cory R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yutao</au><au>Dietrich, Scott</au><au>Forsythe, Carlos</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Moon, Pilkyung</au><au>Dean, Cory R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic band flattening in graphene with one-dimensional superlattices</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>16</volume><issue>5</issue><spage>525</spage><epage>530</epage><pages>525-530</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Patterning graphene with a spatially periodic potential provides a powerful means to modify its electronic properties
1
–
3
. In particular, in twisted bilayers, coupling to the resulting moiré superlattice yields an isolated flat band that hosts correlated many-body phases
4
,
5
. However, both the symmetry and strength of the effective moiré potential are constrained by the constituent crystals, limiting its tunability. Here, we have exploited the technique of dielectric patterning
6
to subject graphene to a one-dimensional electrostatic superlattice (SL)
1
. We observed the emergence of multiple Dirac cones and found evidence that with increasing SL potential the main and satellite Dirac cones are sequentially flattened in the direction parallel to the SL basis vector, behaviour resulting from the interaction between the one-dimensional SL electric potential and the massless Dirac fermions hosted by graphene. Our results demonstrate the ability to induce tunable anisotropy in high-mobility two-dimensional materials, a long-desired property for novel electronic and optical applications
7
,
8
. Moreover, these findings offer a new approach to engineering flat energy bands where electron interactions can lead to emergent properties
9
.
Dielectric patterning allows tunable anisotropy in high-mobility one-dimensional graphene electrostatic superlattices.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33589812</pmid><doi>10.1038/s41565-021-00849-9</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-3994-4255</orcidid><orcidid>https://orcid.org/0000-0003-2228-5337</orcidid><orcidid>https://orcid.org/0000-0003-2967-5960</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2021-05, Vol.16 (5), p.525-530 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_2490124811 |
source | Nature; Alma/SFX Local Collection |
subjects | 142/126 639/925/918/1052 639/925/927/1007 Anisotropy Bilayers Chemistry and Materials Science Cones Crystals Electric potential Energy bands Fermions Graphene Letter Materials Science Mobility Nanotechnology Nanotechnology and Microengineering Optical properties Superlattices Two dimensional materials |
title | Anisotropic band flattening in graphene with one-dimensional superlattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20band%20flattening%20in%20graphene%20with%20one-dimensional%20superlattices&rft.jtitle=Nature%20nanotechnology&rft.au=Li,%20Yutao&rft.date=2021-05-01&rft.volume=16&rft.issue=5&rft.spage=525&rft.epage=530&rft.pages=525-530&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-021-00849-9&rft_dat=%3Cproquest_cross%3E2490124811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526475209&rft_id=info:pmid/33589812&rfr_iscdi=true |