Anisotropic band flattening in graphene with one-dimensional superlattices

Patterning graphene with a spatially periodic potential provides a powerful means to modify its electronic properties 1 – 3 . In particular, in twisted bilayers, coupling to the resulting moiré superlattice yields an isolated flat band that hosts correlated many-body phases 4 , 5 . However, both the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2021-05, Vol.16 (5), p.525-530
Hauptverfasser: Li, Yutao, Dietrich, Scott, Forsythe, Carlos, Taniguchi, Takashi, Watanabe, Kenji, Moon, Pilkyung, Dean, Cory R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 530
container_issue 5
container_start_page 525
container_title Nature nanotechnology
container_volume 16
creator Li, Yutao
Dietrich, Scott
Forsythe, Carlos
Taniguchi, Takashi
Watanabe, Kenji
Moon, Pilkyung
Dean, Cory R.
description Patterning graphene with a spatially periodic potential provides a powerful means to modify its electronic properties 1 – 3 . In particular, in twisted bilayers, coupling to the resulting moiré superlattice yields an isolated flat band that hosts correlated many-body phases 4 , 5 . However, both the symmetry and strength of the effective moiré potential are constrained by the constituent crystals, limiting its tunability. Here, we have exploited the technique of dielectric patterning 6 to subject graphene to a one-dimensional electrostatic superlattice (SL) 1 . We observed the emergence of multiple Dirac cones and found evidence that with increasing SL potential the main and satellite Dirac cones are sequentially flattened in the direction parallel to the SL basis vector, behaviour resulting from the interaction between the one-dimensional SL electric potential and the massless Dirac fermions hosted by graphene. Our results demonstrate the ability to induce tunable anisotropy in high-mobility two-dimensional materials, a long-desired property for novel electronic and optical applications 7 , 8 . Moreover, these findings offer a new approach to engineering flat energy bands where electron interactions can lead to emergent properties 9 . Dielectric patterning allows tunable anisotropy in high-mobility one-dimensional graphene electrostatic superlattices.
doi_str_mv 10.1038/s41565-021-00849-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2490124811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490124811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-5f990e7d1a8203867c7cc2cd2e7c8c5a0a60e714c949286c48981bc80f05fbb03</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRuLr6BzyYJl68VIFCC8fNxs9s4kXPhFK6y6aFCm2M_15q1zXx4GlI5pl3hgeACwRvEMzYbSCI5jSFGKUQMsJTfgBOUEFYmmWcHu7frJiB0xC2EFLMMTkGsyyjjDOET8Dzwprgeu86o5JS2iqpG9n32hq7ToxN1l52G2118mH6TeKsTivTahuMs7JJwtBpP_JG6XAGjmrZBH2-q3Pwdn_3unxMVy8PT8vFKlVZQfuU1pxDXVRIMhx_kReqUAqrCutCMUUllHlsI6I44ZjlioyXlorBGtK6LGE2B9dTbufd-6BDL1oTlG4aabUbgsCEQ4QJQyiiV3_QrRt8vDxSFOekoBjySOGJUt6F4HUtOm9a6T8FgmI0LSbTIpoW36bFOHS5ix7KVlf7kR-1EcgmIMSWXWv_u_uf2C9gyIjW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526475209</pqid></control><display><type>article</type><title>Anisotropic band flattening in graphene with one-dimensional superlattices</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Li, Yutao ; Dietrich, Scott ; Forsythe, Carlos ; Taniguchi, Takashi ; Watanabe, Kenji ; Moon, Pilkyung ; Dean, Cory R.</creator><creatorcontrib>Li, Yutao ; Dietrich, Scott ; Forsythe, Carlos ; Taniguchi, Takashi ; Watanabe, Kenji ; Moon, Pilkyung ; Dean, Cory R.</creatorcontrib><description>Patterning graphene with a spatially periodic potential provides a powerful means to modify its electronic properties 1 – 3 . In particular, in twisted bilayers, coupling to the resulting moiré superlattice yields an isolated flat band that hosts correlated many-body phases 4 , 5 . However, both the symmetry and strength of the effective moiré potential are constrained by the constituent crystals, limiting its tunability. Here, we have exploited the technique of dielectric patterning 6 to subject graphene to a one-dimensional electrostatic superlattice (SL) 1 . We observed the emergence of multiple Dirac cones and found evidence that with increasing SL potential the main and satellite Dirac cones are sequentially flattened in the direction parallel to the SL basis vector, behaviour resulting from the interaction between the one-dimensional SL electric potential and the massless Dirac fermions hosted by graphene. Our results demonstrate the ability to induce tunable anisotropy in high-mobility two-dimensional materials, a long-desired property for novel electronic and optical applications 7 , 8 . Moreover, these findings offer a new approach to engineering flat energy bands where electron interactions can lead to emergent properties 9 . Dielectric patterning allows tunable anisotropy in high-mobility one-dimensional graphene electrostatic superlattices.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-021-00849-9</identifier><identifier>PMID: 33589812</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/925/918/1052 ; 639/925/927/1007 ; Anisotropy ; Bilayers ; Chemistry and Materials Science ; Cones ; Crystals ; Electric potential ; Energy bands ; Fermions ; Graphene ; Letter ; Materials Science ; Mobility ; Nanotechnology ; Nanotechnology and Microengineering ; Optical properties ; Superlattices ; Two dimensional materials</subject><ispartof>Nature nanotechnology, 2021-05, Vol.16 (5), p.525-530</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-5f990e7d1a8203867c7cc2cd2e7c8c5a0a60e714c949286c48981bc80f05fbb03</citedby><cites>FETCH-LOGICAL-c375t-5f990e7d1a8203867c7cc2cd2e7c8c5a0a60e714c949286c48981bc80f05fbb03</cites><orcidid>0000-0002-1467-3105 ; 0000-0003-3701-8119 ; 0000-0003-3994-4255 ; 0000-0003-2228-5337 ; 0000-0003-2967-5960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33589812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yutao</creatorcontrib><creatorcontrib>Dietrich, Scott</creatorcontrib><creatorcontrib>Forsythe, Carlos</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Moon, Pilkyung</creatorcontrib><creatorcontrib>Dean, Cory R.</creatorcontrib><title>Anisotropic band flattening in graphene with one-dimensional superlattices</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Patterning graphene with a spatially periodic potential provides a powerful means to modify its electronic properties 1 – 3 . In particular, in twisted bilayers, coupling to the resulting moiré superlattice yields an isolated flat band that hosts correlated many-body phases 4 , 5 . However, both the symmetry and strength of the effective moiré potential are constrained by the constituent crystals, limiting its tunability. Here, we have exploited the technique of dielectric patterning 6 to subject graphene to a one-dimensional electrostatic superlattice (SL) 1 . We observed the emergence of multiple Dirac cones and found evidence that with increasing SL potential the main and satellite Dirac cones are sequentially flattened in the direction parallel to the SL basis vector, behaviour resulting from the interaction between the one-dimensional SL electric potential and the massless Dirac fermions hosted by graphene. Our results demonstrate the ability to induce tunable anisotropy in high-mobility two-dimensional materials, a long-desired property for novel electronic and optical applications 7 , 8 . Moreover, these findings offer a new approach to engineering flat energy bands where electron interactions can lead to emergent properties 9 . Dielectric patterning allows tunable anisotropy in high-mobility one-dimensional graphene electrostatic superlattices.</description><subject>142/126</subject><subject>639/925/918/1052</subject><subject>639/925/927/1007</subject><subject>Anisotropy</subject><subject>Bilayers</subject><subject>Chemistry and Materials Science</subject><subject>Cones</subject><subject>Crystals</subject><subject>Electric potential</subject><subject>Energy bands</subject><subject>Fermions</subject><subject>Graphene</subject><subject>Letter</subject><subject>Materials Science</subject><subject>Mobility</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optical properties</subject><subject>Superlattices</subject><subject>Two dimensional materials</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1PxCAQhonRuLr6BzyYJl68VIFCC8fNxs9s4kXPhFK6y6aFCm2M_15q1zXx4GlI5pl3hgeACwRvEMzYbSCI5jSFGKUQMsJTfgBOUEFYmmWcHu7frJiB0xC2EFLMMTkGsyyjjDOET8Dzwprgeu86o5JS2iqpG9n32hq7ToxN1l52G2118mH6TeKsTivTahuMs7JJwtBpP_JG6XAGjmrZBH2-q3Pwdn_3unxMVy8PT8vFKlVZQfuU1pxDXVRIMhx_kReqUAqrCutCMUUllHlsI6I44ZjlioyXlorBGtK6LGE2B9dTbufd-6BDL1oTlG4aabUbgsCEQ4QJQyiiV3_QrRt8vDxSFOekoBjySOGJUt6F4HUtOm9a6T8FgmI0LSbTIpoW36bFOHS5ix7KVlf7kR-1EcgmIMSWXWv_u_uf2C9gyIjW</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Li, Yutao</creator><creator>Dietrich, Scott</creator><creator>Forsythe, Carlos</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Moon, Pilkyung</creator><creator>Dean, Cory R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-3994-4255</orcidid><orcidid>https://orcid.org/0000-0003-2228-5337</orcidid><orcidid>https://orcid.org/0000-0003-2967-5960</orcidid></search><sort><creationdate>20210501</creationdate><title>Anisotropic band flattening in graphene with one-dimensional superlattices</title><author>Li, Yutao ; Dietrich, Scott ; Forsythe, Carlos ; Taniguchi, Takashi ; Watanabe, Kenji ; Moon, Pilkyung ; Dean, Cory R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-5f990e7d1a8203867c7cc2cd2e7c8c5a0a60e714c949286c48981bc80f05fbb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>142/126</topic><topic>639/925/918/1052</topic><topic>639/925/927/1007</topic><topic>Anisotropy</topic><topic>Bilayers</topic><topic>Chemistry and Materials Science</topic><topic>Cones</topic><topic>Crystals</topic><topic>Electric potential</topic><topic>Energy bands</topic><topic>Fermions</topic><topic>Graphene</topic><topic>Letter</topic><topic>Materials Science</topic><topic>Mobility</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optical properties</topic><topic>Superlattices</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yutao</creatorcontrib><creatorcontrib>Dietrich, Scott</creatorcontrib><creatorcontrib>Forsythe, Carlos</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Moon, Pilkyung</creatorcontrib><creatorcontrib>Dean, Cory R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yutao</au><au>Dietrich, Scott</au><au>Forsythe, Carlos</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Moon, Pilkyung</au><au>Dean, Cory R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic band flattening in graphene with one-dimensional superlattices</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>16</volume><issue>5</issue><spage>525</spage><epage>530</epage><pages>525-530</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Patterning graphene with a spatially periodic potential provides a powerful means to modify its electronic properties 1 – 3 . In particular, in twisted bilayers, coupling to the resulting moiré superlattice yields an isolated flat band that hosts correlated many-body phases 4 , 5 . However, both the symmetry and strength of the effective moiré potential are constrained by the constituent crystals, limiting its tunability. Here, we have exploited the technique of dielectric patterning 6 to subject graphene to a one-dimensional electrostatic superlattice (SL) 1 . We observed the emergence of multiple Dirac cones and found evidence that with increasing SL potential the main and satellite Dirac cones are sequentially flattened in the direction parallel to the SL basis vector, behaviour resulting from the interaction between the one-dimensional SL electric potential and the massless Dirac fermions hosted by graphene. Our results demonstrate the ability to induce tunable anisotropy in high-mobility two-dimensional materials, a long-desired property for novel electronic and optical applications 7 , 8 . Moreover, these findings offer a new approach to engineering flat energy bands where electron interactions can lead to emergent properties 9 . Dielectric patterning allows tunable anisotropy in high-mobility one-dimensional graphene electrostatic superlattices.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33589812</pmid><doi>10.1038/s41565-021-00849-9</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-3994-4255</orcidid><orcidid>https://orcid.org/0000-0003-2228-5337</orcidid><orcidid>https://orcid.org/0000-0003-2967-5960</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2021-05, Vol.16 (5), p.525-530
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_2490124811
source Nature; Alma/SFX Local Collection
subjects 142/126
639/925/918/1052
639/925/927/1007
Anisotropy
Bilayers
Chemistry and Materials Science
Cones
Crystals
Electric potential
Energy bands
Fermions
Graphene
Letter
Materials Science
Mobility
Nanotechnology
Nanotechnology and Microengineering
Optical properties
Superlattices
Two dimensional materials
title Anisotropic band flattening in graphene with one-dimensional superlattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20band%20flattening%20in%20graphene%20with%20one-dimensional%20superlattices&rft.jtitle=Nature%20nanotechnology&rft.au=Li,%20Yutao&rft.date=2021-05-01&rft.volume=16&rft.issue=5&rft.spage=525&rft.epage=530&rft.pages=525-530&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-021-00849-9&rft_dat=%3Cproquest_cross%3E2490124811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526475209&rft_id=info:pmid/33589812&rfr_iscdi=true