Slow Dynamics of Acute Postoperative Pain Intensity Time Series Determined via Wavelet Analysis Are Associated With the Risk of Severe Postoperative Day 30 Pain

Evidence suggests that increased early postoperative pain (POP) intensities are associated with increased pain in the weeks following surgery. However, it remains unclear which temporal aspects of this early POP relate to later pain experience. In this prospective cohort study, we used wavelet analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anesthesia and analgesia 2021-05, Vol.132 (5), p.1465-1474
Hauptverfasser: Baharloo, Raheleh, Principe, Jose C., Fillingim, Roger B., Wallace, Margaret R., Zou, Baiming, Crispen, Paul L., Parvataneni, Hari K., Prieto, Hernan A., Machuca, Tiago N., Mi, Xinlei, Hughes, Steven J., Murad, Gregory J. A., Rashidi, Parisa, Tighe, Patrick J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1474
container_issue 5
container_start_page 1465
container_title Anesthesia and analgesia
container_volume 132
creator Baharloo, Raheleh
Principe, Jose C.
Fillingim, Roger B.
Wallace, Margaret R.
Zou, Baiming
Crispen, Paul L.
Parvataneni, Hari K.
Prieto, Hernan A.
Machuca, Tiago N.
Mi, Xinlei
Hughes, Steven J.
Murad, Gregory J. A.
Rashidi, Parisa
Tighe, Patrick J.
description Evidence suggests that increased early postoperative pain (POP) intensities are associated with increased pain in the weeks following surgery. However, it remains unclear which temporal aspects of this early POP relate to later pain experience. In this prospective cohort study, we used wavelet analysis of clinically captured POP intensity data on postoperative days 1 and 2 to characterize slow/fast dynamics of POP intensities and predict pain outcomes on postoperative day 30. The study used clinical POP time series from the first 48 hours following surgery from 218 patients to predict their mean POP on postoperative day 30. We first used wavelet analysis to approximate the POP series and to represent the series at different time scales to characterize the early temporal profile of acute POP in the first 2 postoperative days. We then used the wavelet coefficients alongside demographic parameters as inputs to a neural network to predict the risk of severe pain 30 days after surgery. Slow dynamic approximation components, but not fast dynamic detailed components, were linked to pain intensity on postoperative day 30. Despite imbalanced outcome rates, using wavelet decomposition along with a neural network for classification, the model achieved an F score of 0.79 and area under the receiver operating characteristic curve of 0.74 on test-set data for classifying pain intensities on postoperative day 30. The wavelet-based approach outperformed logistic regression (F score of 0.31) and neural network (F score of 0.22) classifiers that were restricted to sociodemographic variables and linear trajectories of pain intensities. These findings identify latent mechanistic information within the temporal domain of clinically documented acute POP intensity ratings, which are accessible via wavelet analysis, and demonstrate that such temporal patterns inform pain outcomes at postoperative day 30.
doi_str_mv 10.1213/ANE.0000000000005385
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2490122767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490122767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3986-7300fdad3b675ea2edae5bcb5ed946c0e7472a53a6137299dda81ca3788935f23</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhS0EokPhDRDykk2Kf8ZJvIw6BSpVgJiiLq07zo3G1EkG25lR3oZHxUOHH9Ub61jnniPfj5DXnF1wweW75tPVBfvvKFmrJ2TBlSiLSun6KVnkV1kIrfUZeRHj9yw5q8vn5ExKpTnn9YL8XPvxQFfzAL2zkY4dbeyUkH4ZYxp3GCC5fVbgBno9JByiSzO9dT3SNQaHka4wYejdgC3dO6B3sEePiTYD-Dm6SJuAtIlxtA5S9ty5tKVpi_Sri_fHujXuMTzuW8FMJftd-5I868BHfHW6z8m391e3lx-Lm88fri-bm8JKXecfS8a6Flq5KSuFILAFVBu7UdjqZWkZVstKgJJQclnllbQt1NyCrOpaS9UJeU7ePuTuwvhjwphM76JF72HAcYpGLDXjQlRlla3LB6sNY4wBO7MLrocwG87MkY3JbMxjNnnszalh2vTY_h36A-Nf7mH0eanx3k8HDGaL4NPWnIJ0IZjgTGVRHPmW8hdw15rF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490122767</pqid></control><display><type>article</type><title>Slow Dynamics of Acute Postoperative Pain Intensity Time Series Determined via Wavelet Analysis Are Associated With the Risk of Severe Postoperative Day 30 Pain</title><source>MEDLINE</source><source>Journals@Ovid LWW Legacy Archive</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Baharloo, Raheleh ; Principe, Jose C. ; Fillingim, Roger B. ; Wallace, Margaret R. ; Zou, Baiming ; Crispen, Paul L. ; Parvataneni, Hari K. ; Prieto, Hernan A. ; Machuca, Tiago N. ; Mi, Xinlei ; Hughes, Steven J. ; Murad, Gregory J. A. ; Rashidi, Parisa ; Tighe, Patrick J.</creator><creatorcontrib>Baharloo, Raheleh ; Principe, Jose C. ; Fillingim, Roger B. ; Wallace, Margaret R. ; Zou, Baiming ; Crispen, Paul L. ; Parvataneni, Hari K. ; Prieto, Hernan A. ; Machuca, Tiago N. ; Mi, Xinlei ; Hughes, Steven J. ; Murad, Gregory J. A. ; Rashidi, Parisa ; Tighe, Patrick J.</creatorcontrib><description>Evidence suggests that increased early postoperative pain (POP) intensities are associated with increased pain in the weeks following surgery. However, it remains unclear which temporal aspects of this early POP relate to later pain experience. In this prospective cohort study, we used wavelet analysis of clinically captured POP intensity data on postoperative days 1 and 2 to characterize slow/fast dynamics of POP intensities and predict pain outcomes on postoperative day 30. The study used clinical POP time series from the first 48 hours following surgery from 218 patients to predict their mean POP on postoperative day 30. We first used wavelet analysis to approximate the POP series and to represent the series at different time scales to characterize the early temporal profile of acute POP in the first 2 postoperative days. We then used the wavelet coefficients alongside demographic parameters as inputs to a neural network to predict the risk of severe pain 30 days after surgery. Slow dynamic approximation components, but not fast dynamic detailed components, were linked to pain intensity on postoperative day 30. Despite imbalanced outcome rates, using wavelet decomposition along with a neural network for classification, the model achieved an F score of 0.79 and area under the receiver operating characteristic curve of 0.74 on test-set data for classifying pain intensities on postoperative day 30. The wavelet-based approach outperformed logistic regression (F score of 0.31) and neural network (F score of 0.22) classifiers that were restricted to sociodemographic variables and linear trajectories of pain intensities. These findings identify latent mechanistic information within the temporal domain of clinically documented acute POP intensity ratings, which are accessible via wavelet analysis, and demonstrate that such temporal patterns inform pain outcomes at postoperative day 30.</description><identifier>ISSN: 0003-2999</identifier><identifier>EISSN: 1526-7598</identifier><identifier>DOI: 10.1213/ANE.0000000000005385</identifier><identifier>PMID: 33591118</identifier><language>eng</language><publisher>United States: Lippincott Williams &amp; Wilkin</publisher><subject>Aged ; Female ; Humans ; Male ; Middle Aged ; Neural Networks, Computer ; Pain Measurement ; Pain Perception ; Pain Threshold ; Pain, Postoperative - diagnosis ; Pain, Postoperative - etiology ; Pain, Postoperative - physiopathology ; Pain, Postoperative - psychology ; Predictive Value of Tests ; Prospective Studies ; Recovery of Function ; Severity of Illness Index ; Time Factors ; Wavelet Analysis</subject><ispartof>Anesthesia and analgesia, 2021-05, Vol.132 (5), p.1465-1474</ispartof><rights>Lippincott Williams &amp; Wilkin</rights><rights>Copyright © 2021 International Anesthesia Research Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3986-7300fdad3b675ea2edae5bcb5ed946c0e7472a53a6137299dda81ca3788935f23</citedby><cites>FETCH-LOGICAL-c3986-7300fdad3b675ea2edae5bcb5ed946c0e7472a53a6137299dda81ca3788935f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&amp;NEWS=n&amp;CSC=Y&amp;PAGE=fulltext&amp;D=ovft&amp;AN=00000539-202105000-00036$$EHTML$$P50$$Gwolterskluwer$$H</linktohtml><link.rule.ids>314,780,784,4606,27922,27923,65231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33591118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baharloo, Raheleh</creatorcontrib><creatorcontrib>Principe, Jose C.</creatorcontrib><creatorcontrib>Fillingim, Roger B.</creatorcontrib><creatorcontrib>Wallace, Margaret R.</creatorcontrib><creatorcontrib>Zou, Baiming</creatorcontrib><creatorcontrib>Crispen, Paul L.</creatorcontrib><creatorcontrib>Parvataneni, Hari K.</creatorcontrib><creatorcontrib>Prieto, Hernan A.</creatorcontrib><creatorcontrib>Machuca, Tiago N.</creatorcontrib><creatorcontrib>Mi, Xinlei</creatorcontrib><creatorcontrib>Hughes, Steven J.</creatorcontrib><creatorcontrib>Murad, Gregory J. A.</creatorcontrib><creatorcontrib>Rashidi, Parisa</creatorcontrib><creatorcontrib>Tighe, Patrick J.</creatorcontrib><title>Slow Dynamics of Acute Postoperative Pain Intensity Time Series Determined via Wavelet Analysis Are Associated With the Risk of Severe Postoperative Day 30 Pain</title><title>Anesthesia and analgesia</title><addtitle>Anesth Analg</addtitle><description>Evidence suggests that increased early postoperative pain (POP) intensities are associated with increased pain in the weeks following surgery. However, it remains unclear which temporal aspects of this early POP relate to later pain experience. In this prospective cohort study, we used wavelet analysis of clinically captured POP intensity data on postoperative days 1 and 2 to characterize slow/fast dynamics of POP intensities and predict pain outcomes on postoperative day 30. The study used clinical POP time series from the first 48 hours following surgery from 218 patients to predict their mean POP on postoperative day 30. We first used wavelet analysis to approximate the POP series and to represent the series at different time scales to characterize the early temporal profile of acute POP in the first 2 postoperative days. We then used the wavelet coefficients alongside demographic parameters as inputs to a neural network to predict the risk of severe pain 30 days after surgery. Slow dynamic approximation components, but not fast dynamic detailed components, were linked to pain intensity on postoperative day 30. Despite imbalanced outcome rates, using wavelet decomposition along with a neural network for classification, the model achieved an F score of 0.79 and area under the receiver operating characteristic curve of 0.74 on test-set data for classifying pain intensities on postoperative day 30. The wavelet-based approach outperformed logistic regression (F score of 0.31) and neural network (F score of 0.22) classifiers that were restricted to sociodemographic variables and linear trajectories of pain intensities. These findings identify latent mechanistic information within the temporal domain of clinically documented acute POP intensity ratings, which are accessible via wavelet analysis, and demonstrate that such temporal patterns inform pain outcomes at postoperative day 30.</description><subject>Aged</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neural Networks, Computer</subject><subject>Pain Measurement</subject><subject>Pain Perception</subject><subject>Pain Threshold</subject><subject>Pain, Postoperative - diagnosis</subject><subject>Pain, Postoperative - etiology</subject><subject>Pain, Postoperative - physiopathology</subject><subject>Pain, Postoperative - psychology</subject><subject>Predictive Value of Tests</subject><subject>Prospective Studies</subject><subject>Recovery of Function</subject><subject>Severity of Illness Index</subject><subject>Time Factors</subject><subject>Wavelet Analysis</subject><issn>0003-2999</issn><issn>1526-7598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1u1DAUhS0EokPhDRDykk2Kf8ZJvIw6BSpVgJiiLq07zo3G1EkG25lR3oZHxUOHH9Ub61jnniPfj5DXnF1wweW75tPVBfvvKFmrJ2TBlSiLSun6KVnkV1kIrfUZeRHj9yw5q8vn5ExKpTnn9YL8XPvxQFfzAL2zkY4dbeyUkH4ZYxp3GCC5fVbgBno9JByiSzO9dT3SNQaHka4wYejdgC3dO6B3sEePiTYD-Dm6SJuAtIlxtA5S9ty5tKVpi_Sri_fHujXuMTzuW8FMJftd-5I868BHfHW6z8m391e3lx-Lm88fri-bm8JKXecfS8a6Flq5KSuFILAFVBu7UdjqZWkZVstKgJJQclnllbQt1NyCrOpaS9UJeU7ePuTuwvhjwphM76JF72HAcYpGLDXjQlRlla3LB6sNY4wBO7MLrocwG87MkY3JbMxjNnnszalh2vTY_h36A-Nf7mH0eanx3k8HDGaL4NPWnIJ0IZjgTGVRHPmW8hdw15rF</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Baharloo, Raheleh</creator><creator>Principe, Jose C.</creator><creator>Fillingim, Roger B.</creator><creator>Wallace, Margaret R.</creator><creator>Zou, Baiming</creator><creator>Crispen, Paul L.</creator><creator>Parvataneni, Hari K.</creator><creator>Prieto, Hernan A.</creator><creator>Machuca, Tiago N.</creator><creator>Mi, Xinlei</creator><creator>Hughes, Steven J.</creator><creator>Murad, Gregory J. A.</creator><creator>Rashidi, Parisa</creator><creator>Tighe, Patrick J.</creator><general>Lippincott Williams &amp; Wilkin</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210501</creationdate><title>Slow Dynamics of Acute Postoperative Pain Intensity Time Series Determined via Wavelet Analysis Are Associated With the Risk of Severe Postoperative Day 30 Pain</title><author>Baharloo, Raheleh ; Principe, Jose C. ; Fillingim, Roger B. ; Wallace, Margaret R. ; Zou, Baiming ; Crispen, Paul L. ; Parvataneni, Hari K. ; Prieto, Hernan A. ; Machuca, Tiago N. ; Mi, Xinlei ; Hughes, Steven J. ; Murad, Gregory J. A. ; Rashidi, Parisa ; Tighe, Patrick J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3986-7300fdad3b675ea2edae5bcb5ed946c0e7472a53a6137299dda81ca3788935f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aged</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neural Networks, Computer</topic><topic>Pain Measurement</topic><topic>Pain Perception</topic><topic>Pain Threshold</topic><topic>Pain, Postoperative - diagnosis</topic><topic>Pain, Postoperative - etiology</topic><topic>Pain, Postoperative - physiopathology</topic><topic>Pain, Postoperative - psychology</topic><topic>Predictive Value of Tests</topic><topic>Prospective Studies</topic><topic>Recovery of Function</topic><topic>Severity of Illness Index</topic><topic>Time Factors</topic><topic>Wavelet Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baharloo, Raheleh</creatorcontrib><creatorcontrib>Principe, Jose C.</creatorcontrib><creatorcontrib>Fillingim, Roger B.</creatorcontrib><creatorcontrib>Wallace, Margaret R.</creatorcontrib><creatorcontrib>Zou, Baiming</creatorcontrib><creatorcontrib>Crispen, Paul L.</creatorcontrib><creatorcontrib>Parvataneni, Hari K.</creatorcontrib><creatorcontrib>Prieto, Hernan A.</creatorcontrib><creatorcontrib>Machuca, Tiago N.</creatorcontrib><creatorcontrib>Mi, Xinlei</creatorcontrib><creatorcontrib>Hughes, Steven J.</creatorcontrib><creatorcontrib>Murad, Gregory J. A.</creatorcontrib><creatorcontrib>Rashidi, Parisa</creatorcontrib><creatorcontrib>Tighe, Patrick J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Anesthesia and analgesia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baharloo, Raheleh</au><au>Principe, Jose C.</au><au>Fillingim, Roger B.</au><au>Wallace, Margaret R.</au><au>Zou, Baiming</au><au>Crispen, Paul L.</au><au>Parvataneni, Hari K.</au><au>Prieto, Hernan A.</au><au>Machuca, Tiago N.</au><au>Mi, Xinlei</au><au>Hughes, Steven J.</au><au>Murad, Gregory J. A.</au><au>Rashidi, Parisa</au><au>Tighe, Patrick J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slow Dynamics of Acute Postoperative Pain Intensity Time Series Determined via Wavelet Analysis Are Associated With the Risk of Severe Postoperative Day 30 Pain</atitle><jtitle>Anesthesia and analgesia</jtitle><addtitle>Anesth Analg</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>132</volume><issue>5</issue><spage>1465</spage><epage>1474</epage><pages>1465-1474</pages><issn>0003-2999</issn><eissn>1526-7598</eissn><abstract>Evidence suggests that increased early postoperative pain (POP) intensities are associated with increased pain in the weeks following surgery. However, it remains unclear which temporal aspects of this early POP relate to later pain experience. In this prospective cohort study, we used wavelet analysis of clinically captured POP intensity data on postoperative days 1 and 2 to characterize slow/fast dynamics of POP intensities and predict pain outcomes on postoperative day 30. The study used clinical POP time series from the first 48 hours following surgery from 218 patients to predict their mean POP on postoperative day 30. We first used wavelet analysis to approximate the POP series and to represent the series at different time scales to characterize the early temporal profile of acute POP in the first 2 postoperative days. We then used the wavelet coefficients alongside demographic parameters as inputs to a neural network to predict the risk of severe pain 30 days after surgery. Slow dynamic approximation components, but not fast dynamic detailed components, were linked to pain intensity on postoperative day 30. Despite imbalanced outcome rates, using wavelet decomposition along with a neural network for classification, the model achieved an F score of 0.79 and area under the receiver operating characteristic curve of 0.74 on test-set data for classifying pain intensities on postoperative day 30. The wavelet-based approach outperformed logistic regression (F score of 0.31) and neural network (F score of 0.22) classifiers that were restricted to sociodemographic variables and linear trajectories of pain intensities. These findings identify latent mechanistic information within the temporal domain of clinically documented acute POP intensity ratings, which are accessible via wavelet analysis, and demonstrate that such temporal patterns inform pain outcomes at postoperative day 30.</abstract><cop>United States</cop><pub>Lippincott Williams &amp; Wilkin</pub><pmid>33591118</pmid><doi>10.1213/ANE.0000000000005385</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2999
ispartof Anesthesia and analgesia, 2021-05, Vol.132 (5), p.1465-1474
issn 0003-2999
1526-7598
language eng
recordid cdi_proquest_miscellaneous_2490122767
source MEDLINE; Journals@Ovid LWW Legacy Archive; EZB-FREE-00999 freely available EZB journals
subjects Aged
Female
Humans
Male
Middle Aged
Neural Networks, Computer
Pain Measurement
Pain Perception
Pain Threshold
Pain, Postoperative - diagnosis
Pain, Postoperative - etiology
Pain, Postoperative - physiopathology
Pain, Postoperative - psychology
Predictive Value of Tests
Prospective Studies
Recovery of Function
Severity of Illness Index
Time Factors
Wavelet Analysis
title Slow Dynamics of Acute Postoperative Pain Intensity Time Series Determined via Wavelet Analysis Are Associated With the Risk of Severe Postoperative Day 30 Pain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slow%20Dynamics%20of%20Acute%20Postoperative%20Pain%20Intensity%20Time%20Series%20Determined%20via%20Wavelet%20Analysis%20Are%20Associated%20With%20the%20Risk%20of%20Severe%20Postoperative%20Day%2030%20Pain&rft.jtitle=Anesthesia%20and%20analgesia&rft.au=Baharloo,%20Raheleh&rft.date=2021-05-01&rft.volume=132&rft.issue=5&rft.spage=1465&rft.epage=1474&rft.pages=1465-1474&rft.issn=0003-2999&rft.eissn=1526-7598&rft_id=info:doi/10.1213/ANE.0000000000005385&rft_dat=%3Cproquest_cross%3E2490122767%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490122767&rft_id=info:pmid/33591118&rfr_iscdi=true