Long‐Range Surface‐Assisted Molecule‐Molecule Hybridization

Metalated phthalocyanines (Pc's) are robust and versatile molecular complexes, whose properties can be tuned by changing their functional groups and central metal atom. The electronic structure of magnesium Pc (MgPc)—structurally and electronically similar to chlorophyll—adsorbed on the Ag(100)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-03, Vol.17 (10), p.e2005974-n/a
Hauptverfasser: Castelli, Marina, Hellerstedt, Jack, Krull, Cornelius, Gicev, Spiro, Hollenberg, Lloyd C. L., Usman, Muhammad, Schiffrin, Agustin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page e2005974
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 17
creator Castelli, Marina
Hellerstedt, Jack
Krull, Cornelius
Gicev, Spiro
Hollenberg, Lloyd C. L.
Usman, Muhammad
Schiffrin, Agustin
description Metalated phthalocyanines (Pc's) are robust and versatile molecular complexes, whose properties can be tuned by changing their functional groups and central metal atom. The electronic structure of magnesium Pc (MgPc)—structurally and electronically similar to chlorophyll—adsorbed on the Ag(100) surface is investigated by low‐temperature scanning tunneling microscopy and spectroscopy, non‐contact atomic force microscopy, and density functional theory. Single, isolated MgPc's exhibit a flat, fourfold rotationally symmetric morphology, with doubly degenerate, partially populated (due to surface‐to‐molecule electron transfer) lowest unoccupied molecular orbitals (LUMOs). In contrast, MgPc's with neighbouring molecules in proximity undergo a lift of LUMOs degeneracy, with a near‐Fermi local density of states with reduced twofold rotational symmetry, indicative of a long‐range attractive intermolecular interaction. The latter is assigned to a surface‐mediated two‐step electronic hybridization process. First, LUMOs interact with Ag(100) conduction electrons, forming hybrid molecule‐surface orbitals with enhanced spatial extension. Then, these delocalized molecule‐surface states further hybridize with those of neighbouring molecules. This work highlights how the electronic structure of molecular adsorbates—including orbital degeneracies and symmetries—can be significantly altered via surface‐mediated intermolecular hybridization, over extended distances (beyond 3 nm), having important implications for prospects of molecule‐based solid‐state technologies. On a silver surface, magnesium phthalocyanine molecules undergo a perturbation of their electronic structure as a result of an attractive interaction with their nearest‐neighbors. Quantitative agreement with supporting theoretical modelling indicates that this interaction consists of multiple‐nanometer‐range intermolecular hybridization enabled by the underlying substrate. These observations offer new possibilities to control electronic properties for engineered nanomaterials.
doi_str_mv 10.1002/smll.202005974
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2489253707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489253707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4134-99b74e5cdff11110cfec6bcf7cec9208f38c34830fd7d19e2ab1e923ca87ad1d3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlavHqXgxcvWfOxuNsdS1ApbBKvnkE0mZUu6WzddpJ78Cf5Gf4kp_RC8OJd5Z3jmZXgRuiR4QDCmt37h3IBiinEieHyEuiQlLEozKo4PmuAOOvN-jjEjNOanqMNYwlOS0S4a5nU1-_78elbVDPrTtrFKQ5iH3pd-BaY_qR3o1m12e9kfr4umNOWHWpV1dY5OrHIeLna9h17v715G4yh_engcDfNIx4TFkRAFjyHRxloSCmsLOi205Rq0oDizLNMszhi2hhsigKqCgKBMq4wrQwzroZut77Kp31rwK7kovQbnVAV16yWNM0ETxjEP6PUfdF63TRW-C5QQXDCS0EANtpRuau8bsHLZlAvVrCXBchOu3IQrD-GGg6udbVsswBzwfZoBEFvgvXSw_sdOTid5_mv-A8WViTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499793152</pqid></control><display><type>article</type><title>Long‐Range Surface‐Assisted Molecule‐Molecule Hybridization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Castelli, Marina ; Hellerstedt, Jack ; Krull, Cornelius ; Gicev, Spiro ; Hollenberg, Lloyd C. L. ; Usman, Muhammad ; Schiffrin, Agustin</creator><creatorcontrib>Castelli, Marina ; Hellerstedt, Jack ; Krull, Cornelius ; Gicev, Spiro ; Hollenberg, Lloyd C. L. ; Usman, Muhammad ; Schiffrin, Agustin</creatorcontrib><description>Metalated phthalocyanines (Pc's) are robust and versatile molecular complexes, whose properties can be tuned by changing their functional groups and central metal atom. The electronic structure of magnesium Pc (MgPc)—structurally and electronically similar to chlorophyll—adsorbed on the Ag(100) surface is investigated by low‐temperature scanning tunneling microscopy and spectroscopy, non‐contact atomic force microscopy, and density functional theory. Single, isolated MgPc's exhibit a flat, fourfold rotationally symmetric morphology, with doubly degenerate, partially populated (due to surface‐to‐molecule electron transfer) lowest unoccupied molecular orbitals (LUMOs). In contrast, MgPc's with neighbouring molecules in proximity undergo a lift of LUMOs degeneracy, with a near‐Fermi local density of states with reduced twofold rotational symmetry, indicative of a long‐range attractive intermolecular interaction. The latter is assigned to a surface‐mediated two‐step electronic hybridization process. First, LUMOs interact with Ag(100) conduction electrons, forming hybrid molecule‐surface orbitals with enhanced spatial extension. Then, these delocalized molecule‐surface states further hybridize with those of neighbouring molecules. This work highlights how the electronic structure of molecular adsorbates—including orbital degeneracies and symmetries—can be significantly altered via surface‐mediated intermolecular hybridization, over extended distances (beyond 3 nm), having important implications for prospects of molecule‐based solid‐state technologies. On a silver surface, magnesium phthalocyanine molecules undergo a perturbation of their electronic structure as a result of an attractive interaction with their nearest‐neighbors. Quantitative agreement with supporting theoretical modelling indicates that this interaction consists of multiple‐nanometer‐range intermolecular hybridization enabled by the underlying substrate. These observations offer new possibilities to control electronic properties for engineered nanomaterials.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202005974</identifier><identifier>PMID: 33576182</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adsorbates ; Atomic beam spectroscopy ; Atomic force microscopy ; Chlorophyll ; Conduction electrons ; Density functional theory ; Electron transfer ; Electronic structure ; Functional groups ; Hybridization ; intermolecular interactions ; Magnesium ; metal‐organic complexes ; Microscopy ; Molecular orbitals ; Molecular structure ; Morphology ; Nanotechnology ; non‐contact atomic force microscopy ; Rotational states ; Scanning tunneling microscopy ; scanning tunneling microscopy and spectroscopy ; surface chemistry ; Symmetry</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-03, Vol.17 (10), p.e2005974-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4134-99b74e5cdff11110cfec6bcf7cec9208f38c34830fd7d19e2ab1e923ca87ad1d3</citedby><cites>FETCH-LOGICAL-c4134-99b74e5cdff11110cfec6bcf7cec9208f38c34830fd7d19e2ab1e923ca87ad1d3</cites><orcidid>0000-0003-4757-6851 ; 0000-0001-6690-4369 ; 0000-0001-7672-6965 ; 0000-0003-3476-2348 ; 0000-0003-2282-8223 ; 0000-0003-1140-8485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202005974$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202005974$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33576182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castelli, Marina</creatorcontrib><creatorcontrib>Hellerstedt, Jack</creatorcontrib><creatorcontrib>Krull, Cornelius</creatorcontrib><creatorcontrib>Gicev, Spiro</creatorcontrib><creatorcontrib>Hollenberg, Lloyd C. L.</creatorcontrib><creatorcontrib>Usman, Muhammad</creatorcontrib><creatorcontrib>Schiffrin, Agustin</creatorcontrib><title>Long‐Range Surface‐Assisted Molecule‐Molecule Hybridization</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Metalated phthalocyanines (Pc's) are robust and versatile molecular complexes, whose properties can be tuned by changing their functional groups and central metal atom. The electronic structure of magnesium Pc (MgPc)—structurally and electronically similar to chlorophyll—adsorbed on the Ag(100) surface is investigated by low‐temperature scanning tunneling microscopy and spectroscopy, non‐contact atomic force microscopy, and density functional theory. Single, isolated MgPc's exhibit a flat, fourfold rotationally symmetric morphology, with doubly degenerate, partially populated (due to surface‐to‐molecule electron transfer) lowest unoccupied molecular orbitals (LUMOs). In contrast, MgPc's with neighbouring molecules in proximity undergo a lift of LUMOs degeneracy, with a near‐Fermi local density of states with reduced twofold rotational symmetry, indicative of a long‐range attractive intermolecular interaction. The latter is assigned to a surface‐mediated two‐step electronic hybridization process. First, LUMOs interact with Ag(100) conduction electrons, forming hybrid molecule‐surface orbitals with enhanced spatial extension. Then, these delocalized molecule‐surface states further hybridize with those of neighbouring molecules. This work highlights how the electronic structure of molecular adsorbates—including orbital degeneracies and symmetries—can be significantly altered via surface‐mediated intermolecular hybridization, over extended distances (beyond 3 nm), having important implications for prospects of molecule‐based solid‐state technologies. On a silver surface, magnesium phthalocyanine molecules undergo a perturbation of their electronic structure as a result of an attractive interaction with their nearest‐neighbors. Quantitative agreement with supporting theoretical modelling indicates that this interaction consists of multiple‐nanometer‐range intermolecular hybridization enabled by the underlying substrate. These observations offer new possibilities to control electronic properties for engineered nanomaterials.</description><subject>Adsorbates</subject><subject>Atomic beam spectroscopy</subject><subject>Atomic force microscopy</subject><subject>Chlorophyll</subject><subject>Conduction electrons</subject><subject>Density functional theory</subject><subject>Electron transfer</subject><subject>Electronic structure</subject><subject>Functional groups</subject><subject>Hybridization</subject><subject>intermolecular interactions</subject><subject>Magnesium</subject><subject>metal‐organic complexes</subject><subject>Microscopy</subject><subject>Molecular orbitals</subject><subject>Molecular structure</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>non‐contact atomic force microscopy</subject><subject>Rotational states</subject><subject>Scanning tunneling microscopy</subject><subject>scanning tunneling microscopy and spectroscopy</subject><subject>surface chemistry</subject><subject>Symmetry</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMotlavHqXgxcvWfOxuNsdS1ApbBKvnkE0mZUu6WzddpJ78Cf5Gf4kp_RC8OJd5Z3jmZXgRuiR4QDCmt37h3IBiinEieHyEuiQlLEozKo4PmuAOOvN-jjEjNOanqMNYwlOS0S4a5nU1-_78elbVDPrTtrFKQ5iH3pd-BaY_qR3o1m12e9kfr4umNOWHWpV1dY5OrHIeLna9h17v715G4yh_engcDfNIx4TFkRAFjyHRxloSCmsLOi205Rq0oDizLNMszhi2hhsigKqCgKBMq4wrQwzroZut77Kp31rwK7kovQbnVAV16yWNM0ETxjEP6PUfdF63TRW-C5QQXDCS0EANtpRuau8bsHLZlAvVrCXBchOu3IQrD-GGg6udbVsswBzwfZoBEFvgvXSw_sdOTid5_mv-A8WViTY</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Castelli, Marina</creator><creator>Hellerstedt, Jack</creator><creator>Krull, Cornelius</creator><creator>Gicev, Spiro</creator><creator>Hollenberg, Lloyd C. L.</creator><creator>Usman, Muhammad</creator><creator>Schiffrin, Agustin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4757-6851</orcidid><orcidid>https://orcid.org/0000-0001-6690-4369</orcidid><orcidid>https://orcid.org/0000-0001-7672-6965</orcidid><orcidid>https://orcid.org/0000-0003-3476-2348</orcidid><orcidid>https://orcid.org/0000-0003-2282-8223</orcidid><orcidid>https://orcid.org/0000-0003-1140-8485</orcidid></search><sort><creationdate>20210301</creationdate><title>Long‐Range Surface‐Assisted Molecule‐Molecule Hybridization</title><author>Castelli, Marina ; Hellerstedt, Jack ; Krull, Cornelius ; Gicev, Spiro ; Hollenberg, Lloyd C. L. ; Usman, Muhammad ; Schiffrin, Agustin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4134-99b74e5cdff11110cfec6bcf7cec9208f38c34830fd7d19e2ab1e923ca87ad1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorbates</topic><topic>Atomic beam spectroscopy</topic><topic>Atomic force microscopy</topic><topic>Chlorophyll</topic><topic>Conduction electrons</topic><topic>Density functional theory</topic><topic>Electron transfer</topic><topic>Electronic structure</topic><topic>Functional groups</topic><topic>Hybridization</topic><topic>intermolecular interactions</topic><topic>Magnesium</topic><topic>metal‐organic complexes</topic><topic>Microscopy</topic><topic>Molecular orbitals</topic><topic>Molecular structure</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>non‐contact atomic force microscopy</topic><topic>Rotational states</topic><topic>Scanning tunneling microscopy</topic><topic>scanning tunneling microscopy and spectroscopy</topic><topic>surface chemistry</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castelli, Marina</creatorcontrib><creatorcontrib>Hellerstedt, Jack</creatorcontrib><creatorcontrib>Krull, Cornelius</creatorcontrib><creatorcontrib>Gicev, Spiro</creatorcontrib><creatorcontrib>Hollenberg, Lloyd C. L.</creatorcontrib><creatorcontrib>Usman, Muhammad</creatorcontrib><creatorcontrib>Schiffrin, Agustin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castelli, Marina</au><au>Hellerstedt, Jack</au><au>Krull, Cornelius</au><au>Gicev, Spiro</au><au>Hollenberg, Lloyd C. L.</au><au>Usman, Muhammad</au><au>Schiffrin, Agustin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long‐Range Surface‐Assisted Molecule‐Molecule Hybridization</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>e2005974</spage><epage>n/a</epage><pages>e2005974-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Metalated phthalocyanines (Pc's) are robust and versatile molecular complexes, whose properties can be tuned by changing their functional groups and central metal atom. The electronic structure of magnesium Pc (MgPc)—structurally and electronically similar to chlorophyll—adsorbed on the Ag(100) surface is investigated by low‐temperature scanning tunneling microscopy and spectroscopy, non‐contact atomic force microscopy, and density functional theory. Single, isolated MgPc's exhibit a flat, fourfold rotationally symmetric morphology, with doubly degenerate, partially populated (due to surface‐to‐molecule electron transfer) lowest unoccupied molecular orbitals (LUMOs). In contrast, MgPc's with neighbouring molecules in proximity undergo a lift of LUMOs degeneracy, with a near‐Fermi local density of states with reduced twofold rotational symmetry, indicative of a long‐range attractive intermolecular interaction. The latter is assigned to a surface‐mediated two‐step electronic hybridization process. First, LUMOs interact with Ag(100) conduction electrons, forming hybrid molecule‐surface orbitals with enhanced spatial extension. Then, these delocalized molecule‐surface states further hybridize with those of neighbouring molecules. This work highlights how the electronic structure of molecular adsorbates—including orbital degeneracies and symmetries—can be significantly altered via surface‐mediated intermolecular hybridization, over extended distances (beyond 3 nm), having important implications for prospects of molecule‐based solid‐state technologies. On a silver surface, magnesium phthalocyanine molecules undergo a perturbation of their electronic structure as a result of an attractive interaction with their nearest‐neighbors. Quantitative agreement with supporting theoretical modelling indicates that this interaction consists of multiple‐nanometer‐range intermolecular hybridization enabled by the underlying substrate. These observations offer new possibilities to control electronic properties for engineered nanomaterials.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33576182</pmid><doi>10.1002/smll.202005974</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4757-6851</orcidid><orcidid>https://orcid.org/0000-0001-6690-4369</orcidid><orcidid>https://orcid.org/0000-0001-7672-6965</orcidid><orcidid>https://orcid.org/0000-0003-3476-2348</orcidid><orcidid>https://orcid.org/0000-0003-2282-8223</orcidid><orcidid>https://orcid.org/0000-0003-1140-8485</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2021-03, Vol.17 (10), p.e2005974-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2489253707
source Wiley Online Library Journals Frontfile Complete
subjects Adsorbates
Atomic beam spectroscopy
Atomic force microscopy
Chlorophyll
Conduction electrons
Density functional theory
Electron transfer
Electronic structure
Functional groups
Hybridization
intermolecular interactions
Magnesium
metal‐organic complexes
Microscopy
Molecular orbitals
Molecular structure
Morphology
Nanotechnology
non‐contact atomic force microscopy
Rotational states
Scanning tunneling microscopy
scanning tunneling microscopy and spectroscopy
surface chemistry
Symmetry
title Long‐Range Surface‐Assisted Molecule‐Molecule Hybridization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%E2%80%90Range%20Surface%E2%80%90Assisted%20Molecule%E2%80%90Molecule%20Hybridization&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Castelli,%20Marina&rft.date=2021-03-01&rft.volume=17&rft.issue=10&rft.spage=e2005974&rft.epage=n/a&rft.pages=e2005974-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202005974&rft_dat=%3Cproquest_cross%3E2489253707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499793152&rft_id=info:pmid/33576182&rfr_iscdi=true